ГИБРИДНЫЕ ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ
Гибридными интегральными микросхемами (ГИМС) называют микросхемы, в которых пассивные элементы (резисторы, конденсаторы, индуктивности) выполнены в виде пленок на диэлектрической подложке, а полупроводниковые электронные приборы (диоды, транзисторы, диодные и транзисторные матрицы, ППИМС) – навесные.
Фрагмент ГИМС приведен на рисунке 5.1.
Рисунок 5.1
Микросхемы с толщиной пленок менее 1 мкм называют тонкопленочными,а с толщиной более 1 мкм - толстопленочнымиГИМС. Напыление тонких пленок осуществляется методами, описанными в разделе 3.6, а получение толстых пленок в [5].
Конфигурации тонко- и толстопленочных элементов одинаковы, но их конкретные геометрические размеры (при заданных электрических параметрах) могут существенно различаться в связи с использованием совершенно разных материалов. Пленочные элементы нет необходимости изолировать друг от друга, так как все они выполняются на диэлектрической подложке. Поскольку расстояния между элементами сравнительно большие, паразитные емкости практически отсутствуют и их учет на эквивалентных схемах обычно не имеет смысла.
Подложки ГИМС.
Подложки в ГИМС играют очень важную роль. Во-первых, подложка является конструктивной основой микросхемы: на неё наносят в виде пленок пассивные элементы схемы и размещают контакты для подключения микросхемы к аппаратуре. Во- вторых, от материала подложки и его обработки существенно зависят параметры осаждаемых пленочных слоев и надежность всей микросхемы.
Материал подложки должен обладать:
- высоким удельным электрическим сопротивлением,
- быть механически прочным при небольших толщинах,
- химически инертным к осаждаемым веществам,
- иметь высокую физическую и химическую стойкость при нагревании до нескольких сот градусов,
- не выделять газов в вакууме,
- обладать хорошей полируемостью поверхности,
- иметь хорошую адгезию (механическое сцепление, прилипаемость) к напыляемым пленкам,
- иметь хорошую теплопроводность,
- иметь температурный коэффициент линейного расширения (ТКЛ) по возможности близким к ТКЛ напыляемых слоев,
- быть недефицитным и иметь невысокую стоимость.
Большинству из этих требований удовлетворяют стекло и керамика. К недостаткам подложек из стекла следует отнести малую теплопроводность, а подложек из керамики – шероховатость поверхности.
В настоящее время для подложек ГИМС в основном применяют ситалл и фотоситалл. Они представляют собой стеклокерамический материал, получаемый путем термообработки (кристаллизации) стекла. По своим свойствам они превосходят свойства исходного стекла и отвечают всем выше перечисленным требованиям.
Подложки, применяемые для ГИМС, имеют, как правило, квадратную или прямоугольную форму (таблица 5.1).
Таблица 5.1
Ширина, мм | ||||||||||
Длина, мм |
Резисторы.
Структура и конфигурации пленочного резистора показаны на рисунке 5.2. Как видим, в общем случае конфигурация пленочного резистора такая же, как диффузионного (рисунок 4.17). Она может быть полосковой (рисунок 5.2б) или зигзагообразной (рисунок 5.2в).
Рисунок 5.2
Расчет сопротивления можно проводить по формуле R=RS×KФ, где RS - удельное сопротивление слоя зависит от его толщины и материала и KФ =l/b- коэффициент формы. Коэффициент формы лежит в пределах 0,1 – 50.
Типичные значения RS и удельной мощности рассеивания Р0 приведены в таблице 5.2.
Таблица 5.2
Материал | RS, Ом/ | Р0, мВт/мм2 | Материал | RS, Ом/ | Р0, мВт/мм2 |
Хром | 10-50 | Рений | 200-300 | ||
Нихром | Сплав МЛТ-3 | ||||
Тантал | 20-100 | Сплав РС-3001 | 1000-2000 | ||
Нитрид тантала | Сплав РС-3710 | ||||
Кермет | 103-104 | Паста | 102-105 |
Примечание: паста используется в толстопленочных ГИМС.
Разброс значений сопротивлений составляет: без подгонки ±5%, а с подгонкой - ±0,05%, ТКС - 0,25×10-4/°С.
Из выше сказанного можно сделать следующие выводы:
- диапазон сопротивлений пленочных резисторов несравненно шире, чем полупроводниковых (диффузионных и ионно-легированных);
- тонкопленочная технология обеспечивает более высокую точность и стабильность резисторов;
- подгонка обеспечивает существенное уменьшение разброса (допусков) сопротивлений; следовательно, возможность такой подгонки является важным преимуществом пленочных резисторов;
Подгонку резисторов можно осуществлять разными способами. Простейший, исторически первый способ состоит в частичном механическом соскабливании резистивного слоя до того, как поверхность ИС защищается тем или иным покрытием. Более совершенными являются методы частичного удаления слоя с помощью электрической искры, электронного или лазерного луча. Разумеется, все эти способы позволяют только увеличивать сопротивление резистора. Наиболее совершенный и гибкий метод состоит в пропускании через резистор достаточно большого тока. При токовой подгонке одновременно идут два процесса: окисление поверхности резистивного слоя и упорядочение его мелкозернистой структуры. Первый процесс способствует увеличению, а второй - уменьшению сопротивления. Подбирая силу тока и атмосферу, в которой ведется подгонка, можно обеспечить изменение сопротивления и в ту, и в другую сторону на ±30% с погрешностью (по отношению к желательному номиналу) до долей процента.
Конденсаторы
Структура и конфигурация типичного пленочного конденсатора показаны на рисунке 5.3. Емкость конденсатора определяется по формуле
С= С0×S, где С0 – удельная емкость конденсатора зависит от материала диэлектрика и толщины пленки, S- площадь конденсатора. Толщина диэлектрической пленки d существенно зависит от технологии: для тонких пленок d = 0,1 - 0,2 мкм, для толстых d = 10 - 20 мкм. Поэтому при прочих равных условиях удельная емкость С0 толстопленочных конденсаторов меньше, чем тонкопленочных. Однако различие в толщине диэлектрика может компенсироваться благодаря различию диэлектрических проницаемостей материалов.
При выборе диэлектрика для высокочастотных конденсаторов (как тонко-, так и толстопленоч- ных) приходится дополнительно учитывать потери энергии в диэлектрике. Что касается омических потерь в обкладках пленочных конденсаторов, то они гораздо меньше, чем у полупроводниковых конденсаторов, потому что в качестве обкладок используются металлические слои с высокой проводимостью поэтому добротность таких конденсаторов высокая и может достигать Q=100.
Рисунок 5.3
В таблице 5.3 приведены типичные параметры пленочных конденсаторов. Из таблицы можно сделатьследующие общие выводы:
Таблица 5.3
Диэлектрик | e | С0, нФ/см2 | Диэлектрик | e | С0, нФ/см2 |
GeO | 10-12 | 5-15 | Ta2 O5 | 20-22 | 50-200 |
SiO | 5-6 | 5-10 | Sb2 S3 | 18-20 | 10-15 |
SiO2 | Паста | - | 4-10 | ||
Al2 O3 | 30-40 |
Примечание: паста используется в толстопленочных ГИМС.
- удельные емкости пленочных конденсаторов (при надлежащем выборе диэлектрика) в несколько раз превышают удельную емкость МОП-конденсаторов и тем более диффузионных конденсаторов;
- максимальные емкости пленочных конденсаторов могут быть на несколько порядков больше, чем емкости полупроводниковых конденсаторов, главным образом благодаря большей площади (поскольку площадь подложек ГИМС значительно превышает площадь кристаллов полупроводниковых ИС).
Для высокочастотных тонкопленочных конденсаторов оптимальным диэлектриком является моноокись кремния, а также моноокись германия.
Следует заметить, что в последнее время, в связи с наличием миниатюрных дискретных конденсаторов (в том числе с весьма большой емкостью - до нескольких микрофарад), наблюдается тенденция к отказу от пленочных конденсаторов и замене их навесными конденсаторами.
Дата добавления: 2015-12-16; просмотров: 2213;