Операции над множествами.

Элементы теории множеств. Операции над множествами.

Определение 1.Множеством называется совокупность некоторых объектов, объединенных в одно целое по какому ‒ либо признаку.

Объекты, из которых состоит множество, называются его элементами.

Обозначаются заглавными буквами латинского алфавита A, B, …, X, Y, …, а их элементы обозначаются малыми буквами a, b, …, x, y.

Определение 1.1.Множество, не содержащее ни одного элемента, называется пустым и обозначается символом Ø.

Множество можно задать пересечением и описанием.

Пример: ; .

Определение 1.2.Множеством A называется подмножеством B, если каждый элемент множества A является элементом множестваB. Символически это обозначают так: A B (A содержится вB).

Определение 1.3.Два множества A иB называются равными, если они состоят из одних и тех же элементов (A =B).

Операции над множествами.

Определение 1.4.Объединением или суммой множеств A и B называется множество, состоящее из элементов, каждый из которых принадлежит хотя бы одному из этих множеств.

Объединение множеств обозначают A B (или A +B). Кратко можно записать A B = .

A B= A +B

Если B A, то A +B=A

Определение 1.5.Пересечением или произведением множеств A иB называется множество, состоящее из элементов, каждый из которых принадлежит множеству A и множествуBодновременно. Пересечение множеств обозначают A B (илиA·B). Кратко можно записать:

A B = .

A B =A ·B

ЕслиB A, тоA · B= B

Определение 1.6. Разностью множеств A и B называется множество, каждый элемент которого является элементом множества Aи не является элементом множества B. Разность множеств обозначают A/B. По определению A/B = .

A/B =AB

Множества, элементами которых являются числа, называются числовыми.

Примерами числовых множеств являются:

N = - множество натуральных чисел.

Z= - множество целых чисел.

Q= - множество рациональных чисел.

R‒ множество действительных чисел.

Множество R содержит рациональные и иррациональные числа. Всякое рациональное число выражается или конечной десятичной дробью или бесконечной периодической дробью. Так, ; … ‒ рациональные числа.

Иррациональное число выражается бесконечной непериодической десятичной дробью. Так, = 1,41421356...; = 3,14159265.... – иррациональное число.

K– множество комплексных чисел (вида Z=a+bi)

R K

Определение 1.7.Ɛ ‒ окрестностью точки x0 называется симметричный интервал (x0 – Ɛ; x0 + Ɛ), содержащий точку x0.

В частности, если интервал (x0 –Ɛ; x0 +Ɛ), то выполнятся неравенство x0 –Ɛ<x<x0 +Ɛ, или, что то же, │xx0 │<Ɛ. Выполнение последнего означает попадание точки x в Ɛ – окрестность точки x0.

Пример 1:

= 2, Ɛ = 0,1.

(2 – 0,1; 2 + 0,1) или (1,9; 2,1) – Ɛ– окрестность.

x– 2│< 0,1

–0,1<x – 2<0,1

2 –0,1<x< 2 + 0,1

1,9<x< 2,1

Пример 2:

A– множество делителей 24;

B– множество делителей 18.

A= .

B= .

A B= A +B =

A B =A ·B =

A /B =AB =

Лекция 2. ФУНКЦИЯ








Дата добавления: 2015-12-16; просмотров: 1208;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.