Классификация погрешностей измерений

Погрешность средств измерения и результатов измерения. В первую очередь погрешность измерений следует разделить на погрешность средств измерений и погрешность результатов измерений.

Погрешности средств измерений - отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие так называемые инструментальные ошибки измерений).

Погрешность результата измерения - отклонение результата измерения от действительного (истинного) значения измеряемой величины , определяемая по формуле - погрешность измерения.

В свою очередь погрешности средств измерений можно разделить на инструментальную и методическую погрешности.

Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях. Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений. Выбор ошибочной методики возможен из-за несоответствия (неадекватности) измеряемой физической величины и ее модели. Причиной методической погрешности может быть не учитываемое взаимное влияние объекта измерений и измерительных приборов или недостаточная точность такого учета. Например, методическая погрешность возникает при измерениях падения напряжения на участке цепи с помощью вольтметра, так как из-за шунтирующего действия вольтметра измеряемое напряжение уменьшается. Инструментальная погрешность обусловлена несовершенством применяемых средств измерений. Причинами ее возникновения являются неточности, допущенные при изготовлении и регулировке приборов, изменение параметров элементов конструкции и схемы вследствие старения. В высокочувствительных приборах могут сильно проявляться их внутренние шумы.

Статическая и динамическая погрешности.Статическая погрешность измерений - погрешность результата измерений, свойственная условиям статического измерения, то есть при измерении постоянных величин после завершения переходных процессов в элементах приборов и преобразователей.

Динамическая погрешность измерений - погрешность результата измерений, свойственная условиям динамического измерения. Динамическая погрешность появляется при измерении переменных величин и обусловлена инерционными свойствами средств измерений.

Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.

Систематические и случайные погрешности. Систематическая погрешность измерения - составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же физической величины. Систематические погрешности являются в общем случае функцией измеряемой величины, влияющих величин (температуры, напряжения питания и пр.) и времени. В функции измеряемой величины систематические погрешности входят при поверке и аттестации образцовых приборов. Случайными называют составляющие погрешности измерений, изменяющиеся случайным образом при повторных измерениях одной и той же величины. Случайные погрешности определяются совместным действием ряда причин: внутренними шумами элементов электронных схем, наводками на входные цепи средств измерений, пульсацией постоянного питающего напряжения

Погрешность градуировки средства измерений - погрешность действительного значения величины, приписанного той или иной отметке шкалы средства измерений в результате градуировки.

Погрешностью адекватности модели называют погрешность при выборе функциональной зависимости. Характерным примером может служить построение линейной зависимости по данным, которые лучше описываются степенным рядом с малыми нелинейными членами.

Погрешность адекватности относится к измерениям для проверки модели. Если зависимость параметра состояния от уровней входного фактора задана при моделировании объекта достаточно точно, то погрешность адекватности оказывается минимальной. Эта погрешность может зависеть от динамического диапазона измерений, например, если однофакторная зависимость задана при моделировании параболой, то в небольшом диапазоне она будет мало отличаться от экспоненциальной зависимости. Если диапазон измерений увеличить, то погрешность адекватности сильно возрастет. В целом в теории планирования эксперимента погрешность адекватности может иметь большое значение, поскольку в многофакторных экспериментах чаще всего рассматривается линейная зависимость параметров состояния от факторов.

Под абсолютной погрешностью понимается алгебраическая разность между номинальным и действительным значениями измеряемой величины. - абсолютные погрешности. Однако в большей степени точность средства измерений характеризует относительная погрешность, т.е. выраженное в процентах отношение абсолютной погрешности к действительному значению измеряемой или воспроизводимой данным средством измерений величины. - относительные погрешности.

Если диапазон измерения прибора охватывает и нулевое значение измеряемой величины, то относительная погрешность обращается в бесконечность в соответствующей ему точке шкалы. В этом случае пользуются понятием приведенной погрешности, равной отношению абсолютной погрешности измерительного прибора к некоторому нормирующему значению. В качестве нормирующего значения принимается значение, характерное для данного вида измерительного прибора. Это может быть, например, диапазон измерений, верхний предел измерений, длина шкалы и т.д. - приведенные погрешности, где и - диапазон изменения величин. Выбор и в каждом конкретном случае разный из-за нижнего предела (чувствительности) прибора.

 

y

 

x

 

y

 

D

 

x

 

D

 

Рисунок 3.1-Класс точности прибора :предел (нижний) приведенной погрешности.

Аддитивные и мультипликативные погрешности. Аддитивной погрешностью называется погрешность, постоянная в каждой точке шкалы.

Мультипликативной погрешностью называется погрешность, линейно возрастающая или убывающая с ростом измеряемой величины.

Различать аддитивные и мультипликативные погрешности легче всего по полосе погрешностей (рисунок 3.2).Если абсолютная погрешность не зависит от значения измеряемой величины, то полоса определяется аддитивной погрешностью (рис.3.2, а). Иногда аддитивную погрешность называют погрешностью нуля.

y

 

x

 

y

 

x

 

а б

Рисунок 3.2 – Аддитивная и мультипликативная погрешности

Если постоянной величиной является относительная погрешность, то полоса погрешностей меняется в пределах диапазона измерений и погрешность называется мультипликативной (рисунок.3.2, б).

Ярким примером аддитивной погрешности является погрешность квантования (оцифровки).

Класс точности измерений зависит от вида погрешностей. Рассмотрим класс точности измерений для аддитивной и мультипликативной погрешностей:

- для аддитивной погрешности: ,

где - верхний предел шкалы, - абсолютная аддитивная погрешность.

- для мультипликативной погрешности

.

- это условие определяет порог чувствительности прибора (измерений).

Абсолютная величина погрешности для обоих типов погрешностей может быть выражена одной формулой:

, (3.1)

где - аддитивная погрешность, -мультипликативная погрешность.

Относительная погрешность с учетом (3.1) выражается формулой

,

и, при уменьшении измеряемой величины, возрастает до бесконечности. Приведенное значение погрешности

(3.2)

возрастает с увеличением измеряемой величины.

Нормирование погрешности средств измерений. Кроме нормирования погрешностей в виде класса точности возникает необходимость нормировать их некоторыми особыми способами. Например, нормирование погрешности цифрового частотомера или моста для измерения сопротивлений. Особенность этих приборов состоит в том, что кроме нижнего порога чувствительности мосты для измерения сопротивлений имеют верхний порог, а для цифрового частотомера погрешность зависит не только от измеряемой величины, но и от времени измерений. Нормировка при измерении сопротивлений имеет вид:

,

где — нижний и верхний пороги измеряемых сопротивлений.

Округление погрешностей обычно осуществляется до десятичного знака, соответствующего погрешности.

Рассмотрим основные типы погрешностей, проявляющихся в лабораторных физических экспериментах.








Дата добавления: 2015-12-11; просмотров: 797;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.015 сек.