Характеристическое рентгеновское излучение. Закон Мозли.

Рентгеновские спектры бывают двух видов: сплошные и линейчатые. Сплошные спектры возникают при торможении быстрых электронов в веществе антикатода и являются обычным тормозным излучением электронов. Строение сплошного спектра не зависит от материала антикатода. Линейчатый спектр состоит из отдельных линий излучения. Он зависит от материала антикатода и полностью характеризуется им. Каждый элемент обладает своим, характерным для него линейчатым спектром. Поэтому линейчатые рентгеновские спектры называют также характеристическими.

Схему возникновения характеристического рентгеновского излучения можно изобразить следующим образом.

 

Между рентгеновскими линейными спектрами и оптическими линейчатыми спектрами существует три коренных различия. Во-первых, частота рентгеновского излучения в тысячи раз больше, чем частота оптического излучения. Это означает, что энергия рентгеновского кванта в тысячи раз больше оптического кванта. Во-вторых, рентгеновские спектры различных элементов имеют одинаковую структуру, в то время как структура оптических спектров различных элементов существенно различается. В-третьих, оптические спектры поглощения состоят из отдельных линий, совпадающих с линиями излучения главной серии соответствующего элемента. Рентгеновские спектры поглощения не похожи на рентгеновские спектры испускания: они состоят из нескольких полос с резким длинноволновым краем.

Все эти особенности рентгеновских спектров объясняются механизмом испускания, который находится в полном согласии со строением электронных оболочек. Электрон, падающий на материал антикатода, сталкиваясь с атомами антикатода, может выбить электрон с одной из внутренних оболочек атома. В результате этого получается атом, у которого отсутствует электрон на одной из внутренних оболочек. Следовательно, электроны более внешних оболочек могут переходить на освободившееся место. В результате этого испускается квант, который и является квантом рентгеновского излучения.

электронами и возмущения со стороны других электронов. При переходе электрона на освободившееся место на внутренней оболочке с внешней оболочки излучается квант, частота которого

Поскольку Z для тяжелых атомов велико, энергия термов также велика по сравнению с энергией оптических термов. Следовательно, и частоты излучения велики по сравнению с оптическими частотами. Этим объясняется большая энергия рентгеновских квантов.

Поскольку внутренние оболочки атомов имеют одинаковое строение, все тяжелые атомы должны иметь одинаково построенные рентгеновские спектры, лишь у более тяжелых атомов спектр смещается в сторону больших частот.

Это полностью подтверждается экспериментом и доказывает, что внутренние оболочки атомов имеют одинаковое строение, как это и предполагалось при объяснении периодической системы элементов.

В 1913 г. Английский физик Мозли установил закон, связывающий длины волн линий рентгеновского спектра с атомным номером элемента Z. Согласно этому закону:

Здесь R– постоянная Ридберга (R=1,1×107 1/м), n– номер энергетического уровня, на который перешел электрон, k– номер энергетического уровня, с которого перешел электрон.

Постоянная sназывается постоянной экранирования. Электроны, совершающие переходы при испускании рентгеновского излучения, находятся под воздействием ядра, притяжение которого несколько ослаблено действием остальных окружающих его электронов. Это экранирующее действие и находит свое выражение в необходимости вычесть из z некоторую величину.

Закон Мозли позволяет определить заряд ядра, зная длину волны линий, характеристического рентгеновского излучения. Именно исследования характеристического рентгеновского излучения позволили расставить окончательно элементы в таблице Менделеева.

Закон Мозли показывает, что корни квадратные из рентгеновских термов зависят линейно от зарядового числа Z элементов.

Если электрон выбит из К-оболочки (n=1), то при переходе на освободившееся место электронов с других оболочек излучается рентгеновская К-серия. При переходе электронов на освободившееся место в L-оболочке (n=2) излучается L-серия и т.д. Таким образом, экспериментально наблюдаемая одинаковость структуры рентгеновских спектров и закон Мозли подтверждают представления, употребляемые при интерпретации периодической системы элементов.

Особенность рентгеновских спектров поглощения также объясняется фактом связи испускания рентгеновского излучения с внутренними оболочками атома. В результате поглощения рентгеновского кванта атомом может произойти вырывание электрона с одной из внутренних оболочек атома, т.е. процесс фотоионизации. Каждая из полос поглощения соответствует вырыванию электрона из соответствующей оболочки атома. Полоса К (рис.9.6.) образуется в результате выбивания электрона из самой внутренней оболочки атома – К-оболочки, полоса L – из второй оболочки и т.д. Резкий длинноволновой край каждой полосы соответствует началу процесса фотоионизации, т.е. вырыванию электрона из соответствующей оболочки без сообщения ему дополнительной кинетической энергии. Длинноволновая часть полосы поглощения соответствует актам фотоионизации с сообщением электрону избыточной кинетической энергии. Структуры рентгеновских спектров поглощения тяжелых элементов аналогичны друг другу и подтверждают одинаковость строения внутренних оболочек атомов тяжелых элементов. На рис.9.7. видно, что каждая из полос поглощения имеет тонкую структуру: в К-полосе есть один максимум, в L-полосе – три максимума, в М-полосе – пять максимумов. Это объясняется тонкой структурой рентгеновских термов.

Если электрон наталкивается на относительно тяжелое ядро, то он тормозится, а его кинетическая энергия выделяется в виде рентгеновского фотона примерно той же энергии. Если же он пролетит мимо ядра, то потеряет лишь часть своей энергии, а остальную будет передавать попадающимся на его пути другим атомам. Каждый акт потери энергии ведет к излучению фотона с какой-то энергией. Возникает непрерывный рентгеновский спектр, верхняя граница которого соответствует энергии самого быстрого электрона. Таков механизм образования непрерывного спектра, а максимальная энергия (или минимальная длина волны), фиксирующая границу непрерывного спектра, пропорциональна ускоряющему напряжению, которым определяется скорость налетающих электронов. Спектральные линии характеризуют материал бомбардируемой мишени, а непрерывный спектр определяется энергией электронного пучка и практически не зависит от материала мишени.

Рентгеновское излучение можно получать не только электронной бомбардировкой, но и облучением мишени рентгеновским же излучением от другого источника. В этом случае, однако, большая часть энергии падающего пучка переходит в характеристический рентгеновский спектр и очень малая ее доля приходится на непрерывный. Очевидно, что пучок падающего рентгеновского излучения должен содержать фотоны, энергия которых достаточна для возбуждения характеристических линий бомбардируемого элемента. Высокий процент энергии, приходящейся на характеристический спектр, делает такой способ возбуждения рентгеновского излучения удобным для научных исследований.

Рентгеновские трубки. Чтобы получать рентгеновское излучение за счет взаимодействия электронов с веществом, нужно иметь источник электронов, средства их ускорения до больших скоростей и мишень, способную выдерживать электронную бомбардировку и давать рентгеновское излучение нужной интенсивности. Устройство, в котором все это есть, называется рентгеновской трубкой. Ранние исследователи пользовались «глубоко вакуумированными» трубками типа современных газоразрядных. Вакуум в них был не очень высоким.

В газоразрядных трубках содержится небольшое количество газа, и когда на электроды трубки подается большая разность потенциалов, атомы газа превращаются в положительные и отрицательные ионы. Положительные движутся к отрицательному электроду (катоду) и, падая на него, выбивают из него электроны, а они, в свою очередь, движутся к положительному электроду (аноду) и, бомбардируя его, создают поток рентгеновских фотонов.

В современной рентгеновской трубке, разработанной Кулиджем , источником электронов является вольфрамовый катод, нагреваемый до высокой температуры. Электроны ускоряются до больших скоростей высокой разностью потенциалов между анодом (или антикатодом) и катодом. Поскольку электроны должны достичь анода без столкновений с атомами, необходим очень высокий вакуум, для чего нужно хорошо откачать трубку. Этим также снижаются вероятность ионизации оставшихся атомов газа и обусловленные ею побочные токи.

Электроны фокусируются на аноде с помощью электрода особой формы, окружающего катод. Этот электрод называется фокусирующим и вместе с катодом образует «электронный прожектор» трубки. Подвергаемый электронной бомбардировке анод должен быть изготовлен из тугоплавкого материала, поскольку большая часть кинетической энергии бомбардирующих электронов превращается в тепло. Кроме того, желательно, чтобы анод был из материала с большим атомным номером, т.к. выход рентгеновского излучения растет с увеличением атомного номера. В качестве материала анода чаще всего выбирается вольфрам, атомный номер которого равен 74.

Конструкция рентгеновских трубок может быть разной в зависимости от условий применения и предъявляемых требований.

Принципы дифракции рентгеновского излучения. Чтобы понять явление дифракции рентгеновского излучения, нужно рассмотреть по порядку: во-первых, спектр рентгеновского излучения, во-вторых, природу кристаллической структуры и, в-третьих, само явление дифракции.

Как уже говорилось выше, характеристическое рентгеновское излучение состоит из серий спектральных линий высокой степени монохроматичности, определяемых материалом анода. С помощью фильтров можно выделить наиболее интенсивные из них. Поэтому, выбрав соответствующим образом материал анода, можно получить источник почти монохроматического излучения с очень точно определенным значением длины волны. Длины волн характеристического излучения обычно лежат в диапазоне от 2,285 для хрома до 0,558 для серебра (значения для различных элементов известны с точностью до шести значащих цифр). Характеристический спектр накладывается на непрерывный «белый» спектр значительно меньшей интенсивности, обусловленный торможением в аноде падающих электронов. Таким образом, от каждого анода можно получить два типа излучения: характеристическое и тормозное, каждое из которых играет по-своему важную роль.

Атомы в кристаллической структуре располагаются с правильной периодичностью, образуя последовательность одинаковых ячеек – пространственную решетку. Некоторые решетки (например, для большинства обычных металлов) довольно просты, а другие (например, для молекул белков) весьма сложны.

Для кристаллической структуры характерно следующее: если от некоторой заданной точки одной ячейки сместиться к соответствующей точке соседней ячейки, то обнаружится точно такое же атомное окружение. И если некоторый атом расположен в той или иной точке одной ячейки, то в эквивалентной ей точке любой соседней ячейки будет находиться такой же атом. Этот принцип строго справедлив для совершенного, идеально упорядоченного кристалла. Однако многие кристаллы (например, металлические твердые растворы) являются в той или иной степени неупорядоченными, т.е. кристаллографически эквивалентные места могут быть заняты разными атомами. В этих случаях определяется не положение каждого атома, а лишь положение атома, «статистически усредненного» по большому количеству частиц (или ячеек).

Дифракция рентгеновского излучения – это коллективное явление рассеяния, при котором роль отверстий и центров рассеяния играют периодически расположенные атомы кристаллической структуры. Взаимное усиление их изображений при определенных углах дает дифракционную картину, аналогичную той, которая возникла бы при дифракции света на трехмерной дифракционной решетке.

Рассеяние происходит благодаря взаимодействию падающего рентгеновского излучения с электронами в кристалле. Вследствие того, что длина волны рентгеновского излучения того же порядка, что и размеры атома, длина волны рассеянного рентгеновского излучения та же, что и падающего. Этот процесс является результатом вынужденных колебаний электронов под действием падающего рентгеновского излучения.

Рассмотрим теперь атом с облаком связанных электронов (окружающих ядро), на который падает рентгеновское излучение. Электроны во всех направлениях одновременно рассеивают падающее и испускают собственное рентгеновское излучение той же длины волны, хотя и разной интенсивности. Интенсивность рассеянного излучения связана с атомным номером элемента, т.к. атомный номер равен числу орбитальных электронов, которые могут участвовать в рассеянии. (Эта зависимость интенсивности от атомного номера рассеивающего элемента и от направления, в котором измеряется интенсивность, характеризуется атомным фактором рассеяния, который играет чрезвычайно важную роль в анализе структуры кристаллов.)

Выберем в кристаллической структуре линейную цепочку атомов, расположенных на одинаковом расстоянии друг от друга, и рассмотрим их дифракционную картину. Уже отмечалось, что рентгеновский спектр складывается из непрерывной части («континуума») и набора более интенсивных линий, характеристических для того элемента, который является материалом анода. Допустим, мы отфильтровали непрерывный спектр и получили почти монохроматический пучок рентгеновского излучения, направленный на нашу линейную цепочку атомов. Условие усиления (усиливающей интерференции) выполняется, если разность хода волн, рассеянных соседними атомами, кратна длины волны. Если пучок падает под углом a0 к линии атомов, разделенных интервалами a (период), то для угла дифракции a разность хода, соответствующая усилению, запишется в виде

a(cos a – cosa0) = hl,

где l – длина волны, а h – целое число.

Чтобы распространить этот подход на трехмерный кристалл, необходимо лишь выбрать ряды атомов по двум другим направлениям в кристалле и решить совместно полученные таким образом три уравнения для трех кристаллических осей с периодами a, b и c. Два других уравнения имеют вид

Это – три фундаментальных уравнения Лауэ для дифракции рентгеновского излучения, причем числа h, k и c – индексы Миллера для плоскости дифракции. Рассматривая любое из уравнений Лауэ, например первое, можно заметить, что, поскольку a, a0, l – константы, а h = 0, 1, 2, ..., его решение можно представить в виде набора конусов с общей осью a (рис. 5). То же самое верно для направлений b и c.

В общем случае трехмерного рассеяния (дифракция) три уравнения Лауэ должны иметь общее решение, т.е. три дифракционных конуса, расположенных на каждой из осей, должны пересекаться; общая линия пересечения показана на рис. 6. Совместное решение уравнений приводит к закону Брэгга – Вульфа:

l = 2(d/n)sinq,

где d – расстояние между плоскостями с индексами h, k и c (период), n = 1, 2, ... – целые числа (порядок дифракции), а q – угол, образуемый падающим пучком (а также и дифрагирующим) с плоскостью кристалла, в которой происходит дифракция.

Анализируя уравнение закона Брэгга – Вульфа для монокристалла, расположенного на пути монохроматического пучка рентгеновского излучения, можно заключить, что дифракцию непросто наблюдать, т.к. величины l и q фиксированы, а sinq < 1. При таких условиях, чтобы имела место дифракция для рентгеновского излучения с длиной волны l, плоскость кристалла с периодом d должна быть повернута на правильный угол q. Для того чтобы реализовать это маловероятное событие, применяются различные методики.

 









Дата добавления: 2015-11-06; просмотров: 7311; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию, введите в поисковое поле ключевые слова и изучайте нужную вам информацию.

Поделитесь с друзьями:

Если вам понравился данный ресурс вы можете рассказать о нем друзьям. Сделать это можно через соц. кнопки выше.
helpiks.org - Хелпикс.Орг - 2014-2020 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.024 сек.