ЛЕКЦИЯ. ПРЕДМЕТ, ЗАДАЧИ И ИСТОРИЯ РАЗВИТИЯ ЭКОЛОГИИ. ОРГАНИЗМ КАК ЖИВАЯ ЦЕЛОСТНАЯ СИСТЕМА. ВЗАИМОДЕЙСТВИЕ ОРГАНИЗМА И СРЕДЫ.
своеобразные охраняемые территории, на которых были запрещены хозяйственные рубки. История сохранила более 60 природоохранных указов Петра I. При нем же началось изучение богатейших природных ресурсов России. В 1805 г. в Москве было основано общество испытателей природы. В конце XIX — начале XX в. возникло движение за охрану редких объектов природы. Трудами выдающихся ученых В. В. Докучаева, К. М. Бэра, Г. А. Кожевникова, И. П. Бородина, Д. Н. Анучина, С. В. Завадского и других были заложены научные основы охраны природы.
Начало природоохранной деятельности Советского государства совпало с рядом первых декретов, начиная с «Декрета о земле» от 26 октября 1917 г., который заложил основы природопользования в стране.
Именно в этот период зарождается и получает законодательное выражение основной вид природоохранной деятельности — охрана природы.
В период 30-40-х гг. в связи с эксплуатацией природных богатств, вызванной главным образом ростом масштабов индустриализации в СССР, охрана природы стала рассматриваться как «единая система мероприятий, направленная на защиту, развитие, качественное обогащение и рациональное использование природных фондов страны» (из резолюции Первого Всероссийского съезда по охране природы, 1929 г.).
Таким образом, в России появился новый вид природоохранной деятельности — рациональное использование природных ресурсов.
В 50-е г. дальнейшее развитие производительных сил в стране, усиление негативного влияния человека на природу обусловили необходимость создания еще одной формы, регулирующей взаимодействие общества и природы, — охраны среды обитания человека. В этот период принимаются республиканские законы об охране природы, которые провозглашают комплексный подход к природе не только как к источнику природных ресурсов, но и как к среде обитания человека. К сожалению, еще торжествовала лысенковская псевдонаука, канонизировались слова И. В. Мичурина о необходимости не ждать милости от природы.
В 60-80-е гг. в СССР практически ежегодно принимались правительственные постановления об усилении охраны природы (об охране бассейна Волги и Урала, Азовского и Черного морей, Ладожского озера, Байкала, промышленных городов Кузбасса и Донбасса, Арктического побережья). Продолжался процесс создания природоохранного законодательства, издавались земельные, водные, лесные и иные кодексы.
Эти постановления и принятые законы, как показала практика их применения, не дали необходимых результатов — губительное антропогенное воздействие на природу продолжалось. В 1986 г. на Чернобыльской АЭС произошла крупнейшая за всю историю развития человечества экологическая катастрофа. Сегодня Россия продолжает находиться в сложной экологической ситуации.
Для более детального ознакомления с историей развития экологического учения рекомендуем материал, изложенный в монографии В.Т. Богучарскова (2005).
§ 3. Значение экологического образования
В настоящее время стихийное развитие взаимоотношений с природой представляет опасность для существования не только отдельных объектов, территорий, стран и т. п., но и для всего человечества.
Это объясняется тем, что человек тесно связан с живой природой происхождением, материальными и духовными потребностями, но, в отличие от других организмов, эти связи приняли такие масштабы и формы, что это может привести (и уже приводит!) к практически полному вовлечению живого покрова планеты (биосферы) в жизнеобеспечение современного общества, поставив человечество на грань экологической катастрофы .
Человек, благодаря данному ему природой разуму, стремится обеспечить себе «комфортные» условия среды, быть независимым от ее физических факторов, например, от климата, от нехватки пищи, избавиться от вредных для него животных и растений (но совсем не «вредных» для остального живого мира!) и т. п. Поэтому человек, прежде всего, отличается от других видов тем, что взаимодействует с природой через создаваемую им культуру, т.е. человечество в целом, развиваясь, создает на Земле культурную среду благодаря передаче из поколения в поколение своего трудового и духовного опыта. Но, как отмечал К. Маркс, «культура, если она развивается стихийно, а не направляется сознательно... оставляет после себя пустыню».
Остановить стихийное развитие событий помогут лишь знания о том, как ими управлять, и в случае с экологией эти знания должны «овладеть массами», по крайней мере большей частью общества, что возможно лишь через всеобщее экологическое образование людей, начиная со школьной скамьи и заканчивая вузом.
Экологические знания необходимы каждому человеку, чтобы сбылась мечта многих поколений мыслителей о создании достойной человека среды, для чего надо построить прекрасные города, развить настолько совершенные производительные силы, которые смогли бы обеспечить гармонию человека и природы. Но эта гармония невозможна, если люди враждебно настроены друг к другу, и тем более, если идут войны, что, к сожалению, имеет место. Как справедливо отметил американский эколог Б. Коммонер в начале 70-х гг., «поиски истоков любой проблемы, связанной с окружающей средой, приводят к неоспоримой истине, что коренная причина кризиса заключена не в том, как люди взаимодействуют с природой, а в том, как они взаимодействуют друг с другом... и что, наконец, миру между людьми и природой должен предшествовать мир между людьми».
Таким образом, экологические знания позволяют осознать всю пагубность войны и распрей между людьми, ведь за этим кроется не просто гибель людей и даже цивилизаций: это приведет к всеобщей экологической катастрофе, к гибели всего человечества. Значит, важнейшее из экологических условий выживания человека и всего живого — это мирная жизнь на Земле. Именно к этому должен и будет стремиться экологически образованный человек.
Но было бы несправедливо строить всю экологию «вокруг» только человека. Да и собственно экология, как мы уже показали выше, возникла для решения задач изучения взаимодействия всего живого с неживой природой и организмов между собой. Человек — такой же организм, и изоляция его от животных и растений дикой природы существенно сказывается на его здоровье. Домашние животные и растения не могут полностью заменить дикую природу. Изменение, а тем более уничтожение природной среды влечет за собой пагубные последствия для жизни человека. Экологические знания позволяют ему убедиться в этом и принимать правильное решение с целью охраны природы, в том числе и на бытовом уровне. Они позволяют ему понять, что человек и природа — единое целое и представления о возможности господства над природой довольно призрачны и примитивны.
Экологически образованный человек не допустит «стихийного» отношения к окружающей его среде жизни. Он будет бороться против экологического варварства, а если в нашей стране таких людей станет большинство, то они обеспечат нормальную жизнь своим потомкам, решительно став на защиту дикой природы от алчного наступления «дикой» цивилизации, преобразуя и совершенствуя саму цивилизацию, находя наилучшие, «экологически чистые» варианты взаимоотношения природы и общества.
Отсюда следует, что в настоящее время остановить нарушение экологических законов можно, только подняв на должную высоту экологическую культуру каждого члена общества, а это возможно сделать прежде всего через образование, через изучение основ экологии. Что особенно важно для специалистов в области наук технического направления, в первую очередь для инженеров-строителей, инженеров в области химии, нефтехимии, металлургии, машиностроения, пищевой и добывающей промышленности и т. д. Настоящий учебник и предназначен для широкого круга студентов, обучающихся в основном по техническим направлениям и специальностям вузов. По замыслу авторов, он должен дать основные представления по главным направлениям теоретической и прикладной экологии и заложить основы экологической культуры будущего специалиста, основанной на глубоком понимании высшей ценности - гармоничного развития человека и природы.
Основные понятия и определения в области экологии, охраны окружающей среды и природопользования
В Федеральном законе Российской Федерации «Об охране окружающей среды» (2002) используются следующие основные понятия и определения:
окружающая среда — совокупность компонентов природной среды, природных и природно-антропогенных объектов, а также антропогенных объектов;
природная среда (далее также — природа) — совокупность компонентов природной среды, природных и природно-антропогенных объектов;
компоненты природной среды — земля, недра, почвы, поверхностные и подземные воды, атмосферный воздух, растительный, животный мир и иные организмы, а также озоновый слой атмосферы и околоземное космическое пространство, обеспечивающие в совокупности благоприятные условия для существования жизни на Земле;
природный объект — естественная экологическая система, природный ландшафт и составляющие их элементы, сохранившие свои природные свойства;
природно-антропогенный объект — природный объект, измененный в результате хозяйственной и иной деятельности, и (или) объект, созданный человеком, обладающий свойствами природного объекта и имеющий рекреационное и защитное значение;
антропогенный объект — объект, созданный человеком для обеспечения его социальных потребностей и не обладающий свойствами природных объектов;
естественная экологическая система — объективно существующая часть природной среды, которая имеет пространственно территориальные границы и в которой живые (растения, животные и другие организмы) и неживые ее элементы взаимодействуют как единое функциональное целое и связаны между собой обменом веществом и энергией;
природный комплекс — комплекс функционально и естественно связанных между собой природных объектов, объединенных географическими и иными соответствующими признаками;
природный ландшафт — территория, которая не подверглась изменению в результате хозяйственной и иной деятельности и характеризуется сочетанием определенных типов рельефа местности, почв, растительности, сформированных в единых климатических условиях;
охрана окружающей среды — деятельность органов государственной власти Российской Федерации, органов государственной власти субъектов Российской Федерации, органов местного самоуправления, общественных и иных некоммерческих объединений, юридических и физических лиц, направленная на сохранение и восстановление природной среды, рациональное использование и воспроизводство природных ресурсов, предотвращение негативного воздействия хозяйственной и иной деятельности на окружающую среду и ликвидацию ее последствий;
качество окружающей среды — состояние окружающей среды, которое характеризуется физическими, химическими, биологическими и иными показателями и (или) их совокупностью;
благоприятная, окружающая среда — окружающая среда, качество которой обеспечивает устойчивое функционирование естественных экологических систем, природных и природно- антропогенных объектов;
природные ресурсы — компоненты природной среды, природные объекты и природно-антропогенные объекты, которые используются или могут быть использованы при осуществлении хозяйственной и иной деятельности в качестве источников энергии, продуктов производства и предметов потребления и имеют потребительскую ценность;
загрязнение окружающей среды — поступление в окружающую среду вещества и (или) энергии, свойства, местоположение или количество которых оказывают негативное воздействие на окружающую среду;
загрязняющее вещество — вещество или смесь веществ, количество и (или) концентрация которых превышают установленные для химических веществ, в том числе радиоактивных, иных веществ и микроорганизмов нормативы и оказывают негативное воздействие на окружающую среду;
нормативы в области охраны окружающей среды —- установленные нормативы качества окружающей среды и нормативы допустимого воздействия на нее, при соблюдении которых обеспечивается устойчивое функционирование естественных экологических систем и сохраняется биологическое разнообразие;
нормативы качества окружающей среды — нормативы, которые установлены в соответствии с физическими, химическими, биологическими и иными показателями для оценки состояния окружающей среды и при соблюдении которых обеспечивается благоприятная окружающая среда;
нормативы допустимого воздействия на окружающую среду — нормативы, которые установлены в соответствии с показателями воздействия хозяйственной и иной деятельности на окружающую среду и при которых соблюдаются нормативы качества окружающей среды;
нормативы допустимой антропогенной нагрузки на окружающую среду — нормативы, которые установлены в соответствии с величиной допустимого совокупного воздействия всех источников на окружающую среду и (или) отдельные компоненты природной среды в пределах конкретных территорий и (или) акваторий и при соблюдении которых обеспечивается устойчивое функционирование естественных экологических систем и сохраняется биологическое разнообразие;
нормативы допустимых выбросов и сбросов химических веществ, в том числе радиоактивных, иных веществ и микро организмов — нормативы, которые установлены для субъектов хозяйственной и иной деятельности в соответствии с показателями массы химических веществ, в том числе радиоактивных, иных веществ и микроорганизмов, допустимых для поступления в окружающую среду от стационарных, передвижных и иных источников в установленном режиме и с учетом технологических нормативов, и при соблюдении которых обеспечиваются нормативы качества окружающей среды;
технологический норматив — норматив допустимых выбросов и сбросов веществ и микроорганизмов, который устанавливается для стационарных, передвижных и иных источников, технологических процессов, оборудования и отражает допустимую массу выбросов и сбросов веществ и микроорганизмов в окружающую среду в расчете на единицу выпускаемой продукции;
нормативы предельно допустимых концентраций химических веществ, в том числе радиоактивных, иных веществ и микроорганизмов — нормативы, которые установлены в соответствии с показателями предельно допустимого содержания химических веществ, в том числе радиоактивных, иных веществ и микроорганизмов в окружающей среде и несоблюдение которых может привести к загрязнению окружающей среды, деградации естественных экологических систем;
нормативы допустимых физических воздействий — нормативы, которые установлены в соответствии с уровнями допустимого воздействия физических факторов на окружающую среду и при соблюдении которых обеспечиваются нормативы качества окружающей среды;
лимиты на выбросы и сбросы загрязняющих веществ и микроорганизмов — ограничения выбросов и сбросов загрязняющих веществ и микроорганизмов в окружающую среду, установленные на период проведения мероприятий по охране окружающей среды, в том числе внедрения наилучших существующих технологий, в целях достижения нормативов в области охраны окружающей среды;
оценка воздействия на окружающую среду — вид деятельности по выявлению, анализу и учету прямых, косвенных и иных последствий воздействия на окружающую среду планируемой хозяйственной и иной деятельности в целях принятия решения о возможности или невозможности ее осуществления;
мониторинг окружающей среды (экологический мониторинг) — комплексная система наблюдений за состоянием окружающей среды, оценки и прогноза изменений состояния окружающей среды под воздействием природных и антропогенных факторов;
государственный мониторинг окружающей среды (государственный экологический мониторинг) — мониторинг окружающей среды, осуществляемый органами государственной власти Российской Федерации и органами государственной власти субъектов Российской Федерации;
контроль в области охраны окружающей среды (экологический контроль) — система мер, направленная на предотвращение, выявление и пресечение нарушения законодательства в области охраны окружающей среды, обеспечение соблюдения субъектами хозяйственной и иной деятельности требований, в том числе нормативов и нормативных документов, в области охраны окружающей среды;
экологический аудит — независимая комплексная, документированная оценка соблюдения субъектом хозяйственной и иной деятельности требований, в том числе нормативов и нормативных документов, в области охраны окружающей среды, требований международных стандартов и подготовка рекомендаций по улучшению такой деятельности;
вред окружающей среде — негативное изменение окружающей среды в результате ее загрязнения, повлекшее за собой деградацию естественных экологических систем и истощение природных ресурсов;
экологический риск — вероятность наступления события, имеющего неблагоприятные последствия для природной среды и вызванного негативным воздействием хозяйственной и иной деятельности, чрезвычайными ситуациями природного и техногенного характера;
экологическая безопасность — состояние защищенности природной среды и жизненно важных интересов человека от возможного негативного воздействия хозяйственной и иной деятельности, чрезвычайных ситуаций природного и техногенного характера, их последствий.
ОБЩАЯ ЭКОЛОГИЯ
Первое появление жизни при создании биосферы должно было произойти не в виде появления одного какого-нибудь вида организма, а в виде их совокупности, отвечающей геохимическим функциям жизни.
В. И. Вернадский
ОРГАНИЗМ КАК ЖИВАЯ ЦЕЛОСТНАЯ СИСТЕМА
Уровни биологической организации и экология
Ген, клетка, орган, организм, популяция, сообщество (биоценоз) — главные уровни организации жизни. Экология изучает уровни биологической организации от организма до экосистем. В ее основе, как и всей биологии, лежит теория эволюционного развития органического мира Ч. Дарвина, базирующаяся на представлении о естественном отборе. В упрощенном виде его можно представить так: в результате борьбы за существование выживают наиболее приспособленные организмы, которые передают выгодные признаки, обеспечивающие выживание, своему потомству, которое может их развить дальше, обеспечив стабильное существование данному типу организмов в данных конкретных условиях среды. Если условия эти изменятся, то выживают организмы с более благоприятными для новых условий признаками, переданными им по наследству, и т. д.
Материалистические представления о происхождении жизни и эволюционную теорию Ч. Дарвина можно объяснить лишь позиций экологической науки. Поэтому не случайно, что вслед за открытием Дарвина (1859) появился термин «экология»
Э.Геккеля (1866). Роль среды, т.е. физических факторов, в эволюции и существовании организмов не вызывает сомнений. Эта среда была названа абиотической, а составляющие ее отдельные части (воздух, вода и др.) и факторы (температура и др. ) называют абиотическими компонентами, в отличие от биотических компонентов, представленных живым веществом.
Взаимодействуя с абиотической средой, т. е. с абиотическими компонентами, они образуют определенные функциональные системы, где живые компоненты и среда — «единый цельный организм».
На рис 1.1. указанные выше компоненты представлены в виде биологической организации биологических систем, которые различаются по принципам организации и масштабам явлений. Они отражают иерархию природных систем, при которой меньшие подсистемы составляют большие системы, сами являющиеся подсистемами более крупных систем.
Свойства каждого отдельного уровня значительно сложнее и многообразнее предыдущего. Но объяснить это можно лишь частично на основе данных о свойствах предшествующего уровня. Иными словами, нельзя предсказать свойства каждого последующего биологического уровня исходя из свойств отдельных составляющих его более низких уровней, подобно тому, как нельзя предсказать свойства воды исходя из свойств кислорода и водорода. Такое явление называют эмерджентностъю — наличием у системного целого особых свойств, не присущих его подсистемам и блокам, а также сумме других элементов, не объединенных системообразующими связями.
Экология изучает правую уровни биологической организации от организмов до экосистем. В экологии организм рассматривается как целостная система, взаимодействующая с внешней средой, как абиотической, так и биотической. В этом случае в наше поле зрения попадает такая совокупность, как биологический вид, состоящий из сходных особей, которые, тем не менее, как индивидуумы отличаются друг от друга. Они точно так же непохожи, как не похож один человек на другого, тоже относящиеся к одному виду. Но всех их объединяет единый для всех генофонд, обеспечивающий их способность к размножению в пределах вида. Не может быть потомства от особей различных видов, даже близкородственных, объединенных в один род, не говоря уже о семействе и более крупных таксонах, объединяющих еще более «далеких родственников».
Поскольку каждый отдельный индивид (особь) имеет свои специфические особенности, то и отношение их к состоянию среды, к воздействию ее факторов различное. Например, повышение температуры часть особей может не выдержать и погибнуть, но популяция всего вида выживает за счет других, более приспособленных.
Популяция — это совокупность особей одного вида. Генетики обычно добавляют как обязательный момент — способность этой совокупности к самовоспроизведению. Экологи же, учитывая обе эти особенности, подчеркивают некую и изолированность в пространстве и во времени аналогичных совокупностей одного и того же вида (Гиляров, 1990).
Изолированность в пространстве и во времени аналогичных популяций отражает реальную природную структуру биоты. В реальной природной среде многие виды рассеяны на огромных пространствах, поэтому изучать приходится некую видовую группировку в пределах определенной территории. Некоторые из группировок достаточно хорошо приспосабливаются к местным условиям, образуя так называемый экотип. Эта даже небольшая группа особей, связанных между собой генетически, может дать начало большой популяции, причем весьма устойчивой достаточно длительное время. Этому способствуют адаптивность особей к абиотической среде, внутривидовая конкуренция и др.
Однако настоящих одновидовых группировок и поселении в природе не существует, и мы обычно имеем дело с группировками, состоящими из многих видов. Такие группировки называются биологическими сообществами, или биоценозами.
Биоценоз — совокупность совместно обитающих популяции разных видов микроорганизмов, растений и животных. Термин «биоценоз» впервые применил Мёбиус (1877), изучая группу организмов устричной банки, т. е. с самого начала это сообщество организмов было ограничено неким «географичеким» пространством, в данном случае границами отмели. В дальнейшем это пространство было названо биотопом, под которым понимаются условия окружающей среды на определенной территории: воздух, вода, почвы и подстилающие их горные породы. Именно в этой окружающей среде существуют растительность, животный мир и микроорганизмы, составляющие биоценоз.
Понятно, что компоненты биотопа не просто существуют рядом, а активно взаимодействуют между собой, создавая определенную биологическую систему, которую академик В. Н. Сукачев назвал биогеоценозом. В этой системе совокупность абиотических и биотических компонентов имеет «...свою, особую специфику взаимодействий» и «определенный тип обмена веществам и энергией их между собой и другими явлениями природы» (Сукачев, 1971). Схема биогеоценоза показана на рис. 1.2. Эта известная схема В. Н. Сукачева, скорректированная Г. А. Новиковым (1979).
Термин «биогеоценоз» был предложен В. Н. Сукачевым в конце 30-х гг. Представления Сукачева в дальнейшем легли в основу биогеоценологии — целого научного направления в биологии, занимающегося проблемами взаимодействия живых организмов между собой и с окружающей их абиотической средой.
Однако несколько раньше, в 1935 г., английским ботаником А. Тенсли был введен термин «экосистема». Экосистема, по А. Теисли, — «совокупность комплексов организмов с комплексом физических факторов его окружения, т. е. факторов местообитания в широком смысле». Подобные определения есть и у многих других известных экологов, например, Ю. Одума, К. Вилли, Р. Уиттекера, К. Уатта.
Многие сторонники экосистемного подхода на Западе считают термины «биогеоценоз» и «экосистема» синонимами, в частности Ю. Одум (1975, 1986).
Однако, видя определенные отличия, ряд российских ученых не разделяют этого мнения. Тем не менее, большинство не считают такие отличия существенными и ставят знак равенства между приведенными понятиями. Это тем более необходимо, что термин «экосистема» широко применяется в смежных науках, особенно природоохранного содержания.
Особое значение для выделения экосистем имеют трофические, т. е. пищевые, взаимоотношения организмов, регулирующие всю энергетику биотических сообществ и всей экосистемы в целом.
Прежде всего, все организмы делятся на две большие группы автотрофов и гетеротрофов.
Автотрофные организмы используют неорганические источники для своего существования, тем самым создавая органическую материю из неорганической. К таким организмам относятся фотосинтезирующие зеленые растения суши и водной среды, сине-зеленые водоросли, некоторые хемосинтезирующие бактерии и др.
Гетеротрофные организмы потребляют только готовые органические вещества. К ним относятся все животные и человек, грибы и др. Гетеротрофы, потребляющие мертвую органику, называются сапротрофами (например, грибы), а способные жить и развиваться в живых организмах за счет живых тканей — паразитами (например, клещи).
Поскольку организмы достаточно разнообразны по видам и формам питания, то они вступают между собой в сложные трофические взаимодействия, тем самым выполняя важнейшие экологические функции в биотических сообществах. Одни из них производят продукцию, другие потребляют, третьи — преобразуют ее в неорганическую форму. Их называют соответственно: продуценты, консументы и редуценты.
Продуценты — производители продукции, которой потом питаются все остальные организмы, — это наземные зеленые растения, микроскопические морские и пресноводные водоросли, производящие органические вещества из неорганических соединений.
Консументы — это потребители органических веществ. Среди них есть животные, потребляющие только растительную пищу, — травоядные(корова), или питающиеся только мясом других животных — плотоядные (хищники), а также потребляющие и то, и другое — «всеядные» (человек, медведь).
Редуценты (деструкторы) — восстановители. Они возвращают вещества из отмерших организмов снова в неживую природу, разлагая органику до простых неорганических соединений и элементов (например, на СО,, N0, и Н,0). Возвращая в почву или в водную среду биогенные элементы, они, тем самым, завершают биохимический круговорот. Это делают в основном бактерии, большинство других микроорганизмов и грибы. Функционально редуценты — это те же самые консументы, поэтому их часто называют микроконсументами.
А. Г. Банников (1977) полагает, что и насекомые также играют важную роль в процессах разложения мертвой органики и в почвообразовательных процессах.
Микроорганизмы, бактерии и другие более сложные формы в зависимости от среды обитания подразделяют на аэробные, т. е. живущие при наличии кислорода, и анаэробные — живущие в бескислородной среде.
2. Развитие организма как живой целостной системы
Организм — любое живое существо. Он отличается от неживой природы определенной совокупностью свойств, присущих только живой материи: клеточная организация; обмен веществ при ведущей роли белков и нуклеиновых кислот, обеспечивающий гомеостаз организма — самовозобновление и поддержание постоянства его внутренней среды. Живым организмам присущи движение, раздражимость, рост, развитие, размножение и наследственность, а также приспособляемость к условиям существования — адаптация.
Взаимодействуя с абиотической средой, организм выступает как целостная система, включающая в себя все более низкие уровни биологической организации (левая часть «спектра», см. рис. 1.1). Все эти части организма (гены, клетки, клеточные ткани, целые органы и их системы) являются компонентами и системами доорганизменного уровня. Изменение одних частей и функций организма неизбежно влечет за собой изменение других его частей и функций. Так, в изменяющихся условиях существования, в результате естественного отбора те или иные органы получают приоритетное развитие. Например, мощная корневая система у растений засушливой зоны (ковыль) или «слепота» в результате редукции глаз у ночных животных, а также у животных существующих в темноте (крот).
Живые организмы обладают обменом веществ, или метаболизмом, при этом происходит множество химических реакций. Примером таких реакций могут служить дыхание, которое еще Лавуазье и Лаплас считали разновидностью горения, или фотосинтез, посредством которого зеленые растения связывают солнечную энергию, а результаты дальнейших процессов метаболизма используются всем растением. и др.
Как известно, в процессе фотосинтеза кроме солнечной энергии используются диоксид углерода и вода. Суммарно химическое уравнение фотосинтеза выглядит так:
солнечная энергия
6СО2 + 12Н,0 --————————————- С6Н,,06 + 60, + 6Н,0,
где С6НпО — богатая энергией молекула глюкозы.
Практически весь диоксид углерода (СО2) поступает из атмосферы, и днем ее движение направлено вниз, к растениям, где осуществляется фотосинтез и выделяется кислород. Дыхание — процесс обратный, и движение СО2; ночью направлено вверх, и идет поглощение кислорода.
Некоторые микроорганизмы, бактерии способны создавать органические соединения и за счет других компонентов, например за счет соединений серы. Такие процессы называются хемосинтезом.
Обмен веществ в организме происходит только при участии особых макромолекулярных белковых веществ —ферментов, выполняющих роль катализаторов. Каждая биохимическая реакция в процессе жизни организма контролируется особым ферментом, который в свою очередь контролируется единичным геном. Изменение гена, называемое мутацией, приводит к изменению биохимической реакции вследствие изменения фермента, а в случае нехватки последнего и к выпадению соответствующей ступени метаболической реакции.
Однако не только ферменты регулируют процессы метаболизма. Им помогают коферменты. Это крупные молекулы, частью которых являются витамины — вещества, необходимые для обмена веществ всех организмов — бактерий, зеленых растений, животных и человека. Отсутствие витаминов ведет к болезням: нарушается обмен веществ.
Наконец, для ряда метаболических процессов необходимы особые химические вещества, называемые гормонами, которые вырабатываются в различных местах (органах) организма и доставляются в другие места кровью или посредством диффузии. Гормоны осуществляют в любом организме общую химическую координацию метаболизма и помогают в этом деле, например нервной системе животных и человека.
На молекулярно-генетическом уровне особенно чувствительно воздействие загрязняющих веществ, ионизирующей и ультрафиолетовой радиации. Они вызывают нарушение генетических систем, структуры клеток и подавляют действие ферментных систем. Все это приводит к болезням человека, животных и растений, угнетению и даже уничтожению видов организмов.
Метаболические процессы протекают с различной интенсивностью на протяжении всей жизни организма, всего пути его индивидуального развития. Этот его путь от зарождения и до конца жизни называется онтогенезом. Онтогенез представляет собой совокупность последовательных морфологических, физиологических и биохимических преобразований, претерпеваемых организмом за весь период жизни.
Онтогенез включает рост организма, т. е. увеличение массы и размеров! тела, и дифференциацию, т. е. возникновение различий между однородными клетками и тканями, приводящее их к специализации по выполнению различных функций в организме. У организмов с половым размножением онтогенез начинается с оплодотворенной клетки (зиготы). При бесполом размножении — с образованием нового организма путем деления материнского тела или специализированной клетки, путем почкования, а также от корневища, клубня, луковицы и т. п.
Каждый организм в онтогенезе проходит ряд стадий развития. Для организмов, размножающихся половым путем, различают зародышевую (эмбриональную) стадию, послезародышевую (постэмбриональную) и период развития взрослого организма. Зародышевый период заканчивается выходом зародыша из яйцовых оболочек, а у живородящих — рождением. Важное экологическое значение для животных имеет первоначальный этап послезародышевого развития — протекающий по типу прямого развития или по типу метаморфоза. В первом случае идет постепенное развитие во взрослую форму (цыпленок — курица, и т. д.), во втором — развитие происходит вначале в виде; личинки, которая существует и питается самостоятельно, прежде чем превратится во взрослую особь (головастик — лягушка). У ряда насекомых личиночная стадия позволяет пережить неблагоприятное время года (низкие температуры, засуху и т. д.)
В онтогенезе растений различают рост, развитие (формируется взрослый организм) и старение (ослабление биосинтеза всех физиологических функций и смерть). Основной особенностью онтогенеза высших растений и большинства водорослей является чередование бесполого (спорофит) и полового (гематофит) поколений.
Процессы и явления, проходящие на онтогенетическом уровне, т. е. на уровне индивида (особи), — это необходимое и весьма существенное звено функционирования всего живого. Процессы онтогенеза могут быть нарушены на любой стадии действием химического, светового и теплового загрязнения среды и привести к появлению уродов или даже к гибели индивидов на послеродовой стадии онтогенеза.
Современный онтогенез организмов сложился в течение длительной эволюции, в результате их исторического развития — филогенеза. Не случайно в 1866 г. этот термин ввел Э. Геккель: для целей экологии необходима реконструкция эволюционных преобразований животных, растений и микроорганизмов. Этим занимается наука филогенетика, которая базируется на данных трех наук — морфологии, эмбриологии и палеонтологии.
Взаимосвязь между развитием живого в историко-эволюционном плане и индивидуальным развитием организма сформулирована Э. Геккелем в виде биогенетического закона: онтогенез всякого организма есть краткое и сжатое повторение филогенеза данного вида. Иными словами, вначале в утробе матери (у млекопитающих и др.), а затем, появившись на свет, индивид в своем развитии повторяет в сокращенном виде историческое развитие своего вида.
3. Системы организмов и биота Земли
В настоящее время на Земле насчитывается более 2,2 млн видов организмов. Систематика их все более усложняется, хотя основной ее «скелет» остается почти неизменным со времени ее создания выдающимся шведским ученым Карлом Линнеем в середине XVIII в.
Известно, что издавна органический мир делился на два царства — животных и растений. Однако в наше время его уже следует делить на две империи — доклеточных (вирусы и фаги) и клеточных (все остальные организмы). Империя доклеточных состоит из единственного царства — вирусов (фаги тоже вирусы-паразиты). Империя клеточных включает уже два надцарства, четыре царства и еще семь полцарств (табл. 1.1).
Таблица 1.1
Высшие таксоны систематики империи клеточных организмов
|
Оказалось, что на Земле существуют две большие группы организмов, различия между которыми намного более глубоки, чем между высшими растениями и высшими животными, и, следовательно, по праву среди клеточных были выделены два надцарства: прокариотов — низкоорганизованных доядериых и эукаритов — высокоорганизованных ядерных. Прокариоты (Ргосагуои) представлены царством так называемых дробянок, к которым относятся бактерии и сине-зеленые водоросли, в клетках которых нет ядра и ДНК в них не отделяется от цитоплазмы никакой мембраной. Эукариоты (Еисагуога) представлены тремя царствами: животных, грибов и растений, клетки которых содержат ядро и ДНК отделена от цитоплазмы ядерной мембраной, поскольку находится в самом ядре. Грибы выделены в отдельное царство, так как оказалось, что они не только не относятся к растениям, но, вероятно, происходят от амебоидных двужгутиковых простейших, т. е. имеют более тесную связь с животным миром.
Однако такое деление живых организмов на четыре царства еще не легло в основу справочной и учебной литературы, поэтому при дальнейшем изложении материала мы придерживаемся традиционных классификаций, по которым бактерии, сине-зеленые водоросли и грибы являются отделами низших растений.
Всю совокупность растительных организмов данной территории планеты любой детальности (региона, района и т.д.) называют флорой, а совокупность животных организмов — фауной.
Флора и фауна данной территории в совокупности составляют биоту. Но эти термины имеют и гораздо более широкое применение. Например, говорят: флора цветковых растений, флора микроорганизмов (микрофлора), микрофлора почв и т. п. Аналогично используется термин «фауна»: фауна млекопитающих, фауна птиц (орнитофауна), микрофауна и т. п. Термин «биота» используют, когда хотят оценить взаимодействие всех живых организмов и среды или, скажем, влияние «почвенной биоты» на процессы почвообразования и др. Ниже приводится общая характеристика фауны и флоры в соответствии с классификацией (табл. 1.1).
Прокариоты являются древнейшими организмами в истории Земли, следы их жизнедеятельности выявлены в отложениях протерозоя, образовавшихся около миллиарда лег назад. В настоящее время их известно около 5000 видов.
Самыми распространенными среди дробянок являются бактерии, и в настоящее время это самые распространенные в биосфере микроорганизмы. Их размеры составляют от десятых долей до двух-трех микрометров.
Некоторые из бактерий являются автотрофами, например, серобактерии, которые образуют органическое вещество за счет хемосинтеза на основе серы. Большинство же бактерий — гетеротрофы, среди которых преобладают сапротрофы, редуценты. Но есть формы, паразитирующие на других организмах, вызывающие болезни у животных, растений, человека.
Бактерии распространены повсеместно, но больше всего их в почвах — сотни миллионов на один грамм почвы, а в черноземах — более двух миллиардов.
Микрофлора почв весьма разнообразна. Здесь бактерии выполняют различные функции и подразделяются на следующие физиологические группы: бактерии гниения, нитрофицируюшие, азотофиксирующие, серобактерии и др. Среди них есть аэробные и анаэробные формы.
В результате эрозии почв бактерии попадают в водоемы. И прибрежной части их до 300 тыс. в 1 мл, с удалением от берега и с глубиной их количество снижается до 100-200 особей на 1 мл.
В атмосфере воздуха бактерий значительно меньше.
Широко распространены бактерии в литосфере ниже почвенного горизонта. Под почвенным слоем их всего на порядок меньше, чем в почве. Бактерии распространяются на сотни метров в глубину земной коры и даже встречаются на глубине двух и более тысяч метров.
Сине-зеленые водоросли сходны по строению с бактериальными клетками, являются фотосинтезирующими автотрофами. Обитают преимущественно в поверхностном слое пресноводных водоемов, хотя есть и в морях. Продуктом их метаболизма являются азотистые соединения, способствующие развитию других планктонных водорослей, что при определенных условиях может привести к «цветению» воды и к ее загрязнению, в том числе и в водопроводных системах.
Эукариоты — это все остальные организмы Земли. Самые распространенные среди них — растения, которых около 300 тыс. видов.
Растения — это практически единственные организмы, которые создают органическое вещество за счет физических (неживых) ресурсов — солнечной инсоляции и химических элементов, извлекаемых из почв (комплекс биогенных элементов). Все остальные питаются уже готовой органической пищей. Поэтому растения как бы создают, продуцируют пищу для всего остального животного мира, т. е. являются продуцентами.
Все одноклеточные и многоклеточные формы растений имеют, как правило, автотрофное питание за счет процессов фотосинтеза.
Водоросли — это большая группа растений, живущих в воде, где они могут либо свободно плавать, либо прикрепляться к субстрату. Водоросли — это первые на Земле фотосинтезирующие организмы, которым мы обязаны появлением кислорода в ее атмосфере. Кроме того, они способны усваивать азот, серу, фосфор, калий и другие компоненты непосредственно из воды, а не из почвы.
Остальные, более высокоорганизованные растения — обитатели суши. Они получают из почвы посредством корневой системы питательные элементы, которые транспортируются через стебель в листья, где берут начало процессы фотосинтеза. Лишайники, мхи, папоротникообразные и цветковые растения являются одним из важнейших элементов географического ландшафта, доминируют здесь цветковые, которых более 250 тыс. видов. Растительность суши — главный генератор кислорода, поступающего в атмосферу, и ее бездумное уничтожение оставит животных и человека не только без пищи, но и без кислорода.
Грибы — низшие организмы, не содержат хлорофилла, размеры от микроскопических до крупных, типа дождевиков, насчитывается их более 100 тыс. видов. Тело гриба состоит из нитчатых образований, которые формируют грибницу, или мицелий. Все грибы — гетеротрофные организмы, среди которых имеются и сапрофиты, и паразиты. Около трех четвертей всех грибов — сапрофиты, питающиеся гниющими растениями, некоторые грибы паразитируют на растениях и единичные — на животных. Большую пользу растениям приносят грибы- симбиотиты, которые органически связаны с растениями: они помогают усваивать труднодоступные вещества гумуса, содействуют своими ферментами обмену веществ, связывают свободный азот, и т. д.
Низшие почвенные грибы играют основную роль в процессах почвообразования.
Животные представлены большим разнообразием форм и размеров, их более 1,7 млн видов. Все царство животных — это гетеротрофные организмы, консументы.
Наибольшее количество видов и наибольшая численность особей у членистоногих. Насекомых, например, столько, что на каждого человека их приходится более 200 млн особей. На втором месте по количеству видов стоит класс моллюсков, но их численность значительно меньше, чем насекомых. Третье место по числу видов занимают позвоночные, среди которых млекопитающие составляют примерно десятую часть, а половина всех видов приходится на рыб.
Значит, большая часть видов позвоночных формировалась в водных условиях, а насекомые — это сугубо животные суши.
Насекомые развивались на суше в тесной связи с цветковыми растениями, являясь их опылителями. Эти растения появились позже других видов, но более половины видов всех растений приходится на цветковые. Видообразование в этих двух классах организмов находилось и находится сейчас в тесной взаимосвязи.
Если сравнить количество видов сухопутных организмов и водных, то это соотношение будет примерно одинаково и для растений, и для животных: количество видов на суше — 92-93%, в воде — 7-8%, значит, выход организмов на сушу дал мощный толчок эволюционному процессу в направлении увеличения видового разнообразия, что ведет к повышению устойчивости природных сообществ организмов и экосистем в целом.
Контрольные вопросы
1. Какие уровни биологической организации являются объектами изучения экологии?
2. Биогеоценоз и экосистема — сходство и различия.
3. Как подразделяются организмы по характеру источника питания и по экологическим функциям в биотических сообществах?
ГЛАВА 2
ВЗАИМОДЕЙСТВИЕ ОРГАНИЗМА И СРЕДЫ
§ 1. Понятие о среде обитания и экологических факторах
Среда обитания организма — это совокупность абиотических и биотических условий его жизни. Свойства среды постоянно меняются, и любое существо, чтобы выжить, приспосабливается к этим изменениям.
Земной биотой освоены три основные среды обитания: водная, наземно-воздушная и почвенная вместе с горными породами приповерхностной части литосферы. Биологи еще часто выделяют четвертую среду жизни — сами живые организмы, заселенные паразитами и симбионтами.
Воздействие среды воспринимается организмами через посредство факторов среды, называемых экологическими.
Экологические факторы — это определенные условия и элементы среды, которые оказывают специфическое воздействие на организм. Они подразделяются на абиотические, биотические и антропогенные (рис. 2.1).
Абиотическими факторами называют всю совокупность факторов неорганической среды, влияющих на жизнь и распространение животных и растений. Среди них различают физические, химические и эдафические.
Физические факторы — это те, источником которых служит физическое состояние или явление (механическое, волновое и др.). Например, температура, если она высокая, вызовет ожог, если очень низкая — обморожение. На действие температуры могут повлиять и другие факторы: в воде — течение, на суше — ветер и влажность, и т. п.
Но есть и физические факторы глобального воздействия на организмы, к которым относятся естественные геофизические поля Земли (Трофимов, Зилинг, 2002). Хорошо известно, например, экологическое воздействие магнитного, электромагнитного, радиоактивного и других полей нашей планеты.
Химические факторы — это те, которые происходят от химического состава среды. Например, соленость воды. Если она высокая, жизнь в водоеме может вовсе отсутствовать (Мертвое море), но в то же время в пресной воде не могут жить большинство морских организмов. От достаточности содержания кислорода зависит жизнь животных на суше и в воде, и т. п.
Эдафические факторы, т. е. почвенные, —это совокупность химических, физических и механических свойств почв и горных пород, оказывающих воздействие как на организмы, живущие в них, т. е. те, для которых они являются средой обитания, так и на корневую систему растений. Хорошо известно влияние химических компонентов (биогенных элементов), температуры, влажности, структуры почв, содержания гумуса и т. п. на рост и развитие растений.
Однако не только абиотические факторы влияют на организмы. Организмы образуют сообщества, где им приходится бороться за пищевые ресурсы, за обладание определенными пастбищами или территорией охоты, т. е. вступать в конкурентную борьбу между собой. При этом проявляются хищничество, паразитизм и другие сложные взаимоотношения как на внутривидовом, так и, особенно, на межвидовом уровне. Это уже факторы живой природы, или биотические факторы.
Биотические факторы — совокупность влияний жизнедеятельности одних организмов на жизнедеятельность других, а также на неживую среду обитания (Хрусталев и др., 1996). В последнем случае речь идет о способности самих организмов г определенной степени влиять на условия обитания. Например, в лесу под влиянием растительного покрова создается особый микроклимат, или микросреда, где по сравнению с открытым местообитанием создается свой температурно-влажностной режим: зимой здесь на несколько градусов теплее, летом — прохладнее и влажнее. Особая микросреда возникает также в дуплах деревьев, в норах, в пещерах и т. п.
Особо следует отметить условия микросреды под снежным покровом, которая имеет уже чисто абиотическую природу. В результате отепляющего действия снега, которое наиболее эффективно при его толщине не менее 50-70 см, в его основании, примерно в 5-сантиметровом слое, живут зимой мелкие животные-грызуны, так как температурные условия для них здесь благоприятны (от 0 до -2 °С). Благодаря этому же эффекту сохраняются под снегом всходы озимых злаков — ржи, пшеницы. В снегу от сильных морозов прячутся и крупные животные — олени, лоси, волки, лисицы, зайцы и др. — ложась в снег для отдыха.
Внутривидовые взаимодействия между особями одного и того же вида складываются из группового и массового эффектов и внутривидовой конкуренции. Групповой и массовый эффекты — термины, предложенные Д.Б. Грассе (1944), обозначают объединение животных одного вида в группы по две или более особей, и эффект, вызванный перенаселением среды. В настоящее время чаще всего эти эффекты называются демографическими факторами. Они характеризуют динамику численности и плотность групп организмов на популяционном уровне, в основе которой лежит внутривидовая конкуренция, которая в корне отличная от межвидовой. Она проявляется в основном в территориальном поведении животных, которые защищают места своих гнездовий и известную площадь в округе. Таковы многие птицы и рыбы.
Межвидовые взаимоотношения значительно более разнообразны (см. рис. 2.1). Два живущие рядом вида могут вообще никак не влиять друг на друга, могут влиять и благоприятно, и неблагоприятно. Возможные типы комбинаций и отражают различные виды взаимоотношений:
нейтрализм — оба вида независимы и не оказывают никакого действия друг на друга;
конкуренция — каждый из видов оказывает на другой неблагоприятное воздействие;
мутуализм — виды не могут существовать друг без друга;
проток о операция (содружество) — оба вида образуют сообщество, но могут существовать и раздельно, хотя сообщество приносит им обоим пользу;
комменсализм — один вид, комменсал, извлекает пользу от сожительства, а другой вид — хозяин не имеет никакой выгоды (взаимная терпимость);
аменсализм — один вид угнетает рост и размножение другого — аменсала;
паразитизм — паразитический вид тормозит рост и размножение своего хозяина и даже может вызвать его гибель;
хищничество — хищный вид питается своей жертвой.
Межвидовые отношения лежат в основе существования биотических сообществ (биоценозов).
Антропогенные факторы — факторы, порожденные человеком и воздействующие на окружающую среду (загрязнение, эрозия почв, уничтожение лесов и т. д.), рассматриваются в прикладной экологии (см. «Часть II» настоящего учебника).
Среди абиотических факторов довольно часто выделяют климатические (температура, влажность воздуха, ветер и др.) и гидрографические — факторы водной среды (вода, течение, соленость и др.).
Большинство факторов качественно и количественно изменяются во времени. Например, климатические — в течение суток, сезона, по годам (температура, освещенность и др.).
Факторы, изменения которых во времени повторяются регулярно, называют периодическими. К ним относятся не только климатические, но и некоторые гидрографические — приливы и отливы, некоторые океанские течения. Факторы, возникающие неожиданно (извержение вулкана, нападение хищника и т. п.), называются непериодическими.
Подразделение факторов на периодические и непериодические (Мончадский, 1958) имеет очень важное значение при изучении приспособленности организмов к условиям жизни.
§ 2. Основные представления об адаптациях организмов
Адаптация (лат. «приспособление») — приспособление организмов к среде. Этот процесс охватывает строение и функции организмов (особей, видов, популяций) и их органов. Адаптация всегда развивается под воздействием трех основных факторов — изменчивости, наследственности и естественного отбора (равно как и искусственного — осуществляемого человеком).
Основные адаптации организмов к факторам внешней среды наследственно обусловлены. Они формировались на историко-эволюционном пути биоты и изменялись вместе с изменчивостью экологических факторов. Организмы адаптированы к постоянно действующим периодическим факторам, но среди них важно различать первичные и вторичные.
Первичные — это те факторы, которые существовали на Земле еще до возникновения жизни: температура, освещенность, приливы, отливы, естественные геофизические поля и др. Адаптация организмов к этим факторам наиболее древняя и наиболее совершенная.
Вторичные периодические факторы являются следствием изменения первичных: влажность воздуха, зависящая от температуры; растительная пища, связанная с цикличностью в развитии растений; ряд биотических факторов внутривидового влияния и др. Они возникли позднее первичных, и адаптация к ним не всегда четко выражена.
В нормальных условиях в местообитании должны действовать только периодические факторы, непериодические — отсутствовать.
Непериодические факторы обычно воздействуют катастрофически: могут вызвать болезни или даже смерть живого организма. Человек использовал это в своих интересах, искусственно вводя непериодические факторы: например, химическая отрава уничтожает вредные для него организмы: паразитов, вредителей сельхозкультур, болезнетворные бактерии, вирусы и т. п. Но оказалось, что длительное воздействие этого фактора также может вызвать адаптацию к нему: насекомые адаптировались к ДДТ, бактерии и вирусы — к антибиотикам, и т. д.
Источником адаптации являются генетические изменения в организме — мутации, возникающие как под влиянием естественных факторов на историко-эволюционном этапе, так и в результате искусственного влияния на организм. Мутации разнообразны, и их накопление может даже привести к дезинтеграционным явлениям, но благодаря отбору мутации и их комбинирование приобретают значение «ведущего творческого фактора адаптивной организации живых форм» (БСЭ. Т. 1. 1970).
На историко-эволюционном пути развития на организмы действуют абиотические и биотические факторы в комплексе. Известны как успешные адаптации организмов к этому комплексу факторов, так и «безуспешные», т. е. вместо адаптации вид вымирает.
Прекрасный пример успешной адаптации — эволюция лошади в течение примерно 60 млн лет от низкорослого предка до современного красивейшего быстроногого животного с высотой в холке до 1,6 м. Противоположный этому пример — сравнительно недавнее (десятки тысяч лет назад) вымирание мамонтов. Высокоаридный, субарктический климат последнего оледенения привел к исчезновению растительности, которой питались эти животные, кстати, хорошо приспособленные к низким температурам (Величко, 1970). Кроме того, высказываются мнения, что в исчезновении мамонта «повинен» и первобытный человек, которому тоже надо было выжить: мясо мамонтов употреблялось им в качестве пищи, а шкура спасала от холода.
В приведенном примере с мамонтами недостаток растительной пищи вначале ограничивал численность мамонтов, а ее исчезновение привело к их гибели. Растительная пища выступала здесь в виде лимитирующего фактора. Эти факторы играют важнейшую роль в выживании и адаптации организмов.
§ 3. Лимитирующие факторы
Впервые на значение лимитирующих факторов указал немецкий агрохимик Ю. Либих в середине XIX в. Он установил закон минимума: урожай (продукция) зависит от фактора, находящегося в минимуме. Если в почве полезные компоненты в целом представляют собой уравновешенную систему и только какое-то вещество, например фосфор, содержится в количествах, близких к минимуму, то это может снизить урожай. Но оказалось, что даже те же самые минеральные вещества, очень полезные при оптимальном содержании их в почве, снижают урожай, если они в избытке. Значит, факторы могут быть лимитирующими, находясь и в максимуме.
Таким образом, лимитирующими экологическими факторами следует называть такие факторы, которые ограничивают развитие организмов из-за недостатка или их избытка по сравнению с потребностью (оптимальным содержанием). Их иногда называют ограничивающими факторами.
Что касается закона минимума Ю. Либиха, то он имеет ограниченное действие и только на уровне химических веществ. Р. Митчерлих показал, что урожай зависит от совокупного действия всех факторов жизни растений, включая температуру, влажность, освещенность и т. д.
Различия в совокупном и изолированном действиях относятся и к другим факторам. Например, с одной стороны, действие отрицательных температур усиливается ветром и высокой влажностью воздуха, но, с другой — высокая влажность ослабляет действие высоких температур, и т. д. Однако, несмотря на взаимовлияние факторов, все-таки они не могут заменить друг друга, что и нашло отражение в законе независимости факторов В. Р. Вильямса: условия жизни равнозначны, ни один из факторов жизни не может быть заменен другим. Например, нельзя действие влажности (воды) заменить действием углекислого газа или солнечного света, и т. д.
Наиболее полно и в наиболее общем виде всю сложность влияния экологических факторов на организм отражает закон толерантности В. Шелфорда: отсутствие или невозможность процветания определяется недостатком (в качественном или количественном смысле) или, наоборот, избытком любого из ряда факторов, уровень которых может оказаться близким к пределам переносимого данным организмом. Эти два предела называют пределами толерантности.
Относительно действия одного фактора можно проиллюстрировать этот закон так: некий организм способен существовать при температуре от -5 °С до 25 °С, т. е. диапазон его толерантности лежит в пределах этих температур. Организмы, для жизни которых требуются условия, ограниченные узким диапазоном толерантности по величине температуры, называют стенотермными («стено» — узкий), а способных жить в широком диапазоне температур — эвритермными («эври» — широкий) (рис. 2.2).
Подобно температуре действуют и другие лимитирующие факторы, а организмы по отношению к характеру их воздействия называют, соответственно, стенобионтами и эврибионтами. Например, говорят: организм стенобионтен по отношению к влажности, или эврибионтен к климатическим факторам, и т. п. Организмы, эврибионтные к основным климатическим факторам, наиболее широко распространены на Земле.
Диапазон толерантности организма не остается постоянным — он, например, сужается, если какой-либо из факторов близок к какому-либо пределу, или при размножении организма, когда многие факторы становятся лимитирующими. Значит', и характер действия экологических факторов при определенных условиях может меняться, т. е. он может быть, а может и не быть лимитирующим. При этом нельзя забывать, что организмы и сами способны снизить лимитирующее действие факторов, создав, например, определенный микроклимат (микросреду). Здесь возникает своебразная компенсация факторов, которая наиболее эффективна на уровне сообществ, реже — на видовом уровне.
Такая компенсация факторов обычно создает условия для физиологической акклиматизации вида-эврибионта, имеющего широкое распространение, который, акклиматизируясь в данном конкретном месте, создает своеобразную популяцию, экотип, пределы толерантности которой соответствуют местным условиям. При более глубоких адаптационных процессах здесь могут появиться и генетические расы.
Итак, в природных условиях организмы зависят от состояния критических физических факторов, от содержания необходимых веществ и от диапазона толерантности самих организмов к этим и другим компонентам среды.
§ 4. Значение физических и химических факторов среды в жизни организмов
Влияние температуры на организмы
Температура — важнейший из ограничивающих (лимитирующих) факторов. Пределами толерантности для любого вида являются максимальная и минимальная летальные температуры, за пределами которых вид смертельно поражают жара или холод (рис. 2.3). Если не принимать во внимание некоторые уникальные исключения, все живые существа способны жить при температуре между 0 и 50 °С, что обусловлено свойствами протоплазмы клеток.
На рис. 2.3 показаны температурные пределы жизни видовой группы, популяции. В «оптимальном интервале» организмы чувствуют себя комфортно, активно размножаются и численность популяции растет. К граничным участкам температурного предела жизни — «пониженной жизнедеятельности» — организмы чувствуют себя угнетенно. При дальнейшем похолодании в пределах «нижней границы стойкости» или увеличении жары в пределах «верхней границы стойкости» организмы попадают в «зону смерти» и погибают.
Этим примером иллюстрируется общий закон биологической стойкости (по Ламотту), применимый к любому из важных лимитирующих факторов. Величина «оптимального интервала» характеризует «величину» стойкости организмов, т. е. величину их толерантности к этому фактору, или «экологическую валентность».
Адаптационные процессы у животных по отношению к температуре привели к появлению пойкилотермных и гомойотермных животных. Подавляющее большинство животных являются пойкилотермными, т. е. температура их собственного тела меняется с изменением температуры окружающей среды: земноводные, пресмыкающиеся, насекомые и др. Значительно меньшая часть животных — гомойотермные, т. е. имеют постоянную температуру тела, независимую от температуры внешней среды: млекопитающие (в том числе и человек), имеющие температуру тела 36-37 °С, и птицы с температурой тела 40 °С.
Активную жизнь при температуре ниже нуля могут вести только гомойотермные животные. Пойкилотермные хотя выдерживают температуру значительно ниже нуля, но при этом теряют подвижность. Температура порядка 40 °С, т. е. даже ниже температуры свертывания белка, для большинства животных предельна.
Не меньшее значение температура имеет в жизни растений. При повышении температуры на 10 °С интенсивность фотосинтеза увеличивается в два раза, но лишь до 30-35 °С, затем его интенсивность падает, и при 40-45 °С фотосинтез вообще прекращается. При 50 °С большинство наземных растений погибает, что связано с интенсификацией дыхания растений при повышении температуры, а затем его прекращения при 50 °С.
Температура влияет и на ход корневого питания у растений: этот процесс возможен лишь при условии, когда температура почвы на всасывающих участках на несколько градусов ниже температуры наземной части растения. Нарушение этого равновесия влечет за собой угнетение жизнедеятельности растения и даже его гибель.
Известны морфологические приспособления растений к низким температурам, так называемые жизненные формы растений, которые, например, можно выделить по положению почек возобновления растительных видов по отношению к поверхности почвы и к защите, которую они получают от снежного покрова, лесной подстилки, слоя почвы и т. п. Вот некоторые из форм (по Раункеру): эпифиты — растут на других растениях и не имеют корне
Дата добавления: 2015-11-06; просмотров: 1543;