Предельная ошибка выборки. Учитывая, что на основе выборочного обследования нельзя точно оценить обобщающую характеристику ГС, необходимо найти пределы
Учитывая, что на основе выборочного обследования нельзя точно оценить обобщающую характеристику ГС, необходимо найти пределы, в которых он находится. В конкретной выборке разность может быть больше, меньше или равна . Каждое из отклонений от имеет определенную вероятность. При выборочном обследовании реальное значение в ГС неизвестно. Зная среднюю ошибку выборки, с определенной вероятностью можно оценить отклонение выборочной средней от генеральной и установить пределы, в которых находится изучаемый параметр (в данном случае среднее значение) в генеральной совокупности. Отклонение выборочной характеристики от генеральной называется предельной ошибкой выборки . Она определяется в долях средней ошибки с заданной вероятностью, т.е.
= t ,(67)
где t – коэффициент доверия, зависящий от вероятности, с которой определяется предельная ошибка выборки.
Вероятность появления определенной ошибки выборки находят с помощью теорем теории вероятностей. Согласно теореме Чебышёва, при достаточно большом объеме выборки и ограниченной дисперсии генеральной ГС вероятность того, что разность между выборочной средней и генеральной средней будет сколь угодно мала, близка к единице:
при . (68)
А. М. Ляпунов доказал, что независимо от характера распределения генеральной ГС при увеличении объема выборки распределение вероятностей появления того или иного значения выборочной средней приближается к нормальному распределению (центральная предельная теорема). Следовательно, вероятность отклонения выборочной средней от генеральной средней, т.е. вероятность появления заданной предельной ошибки, также подчиняется указанному закону и может быть найдена как функция от t с помощью интеграла вероятностей Лапласа:
, (69)
где – нормированное отклонение выборочной средней от генеральной средней.
Значения P (интеграла Лапласа) для разных t рассчитаны и имеются в специальной таблице, которая приведена в Приложении 1.
Вероятность, которая принимается при расчете выборочной характеристики, называется доверительной. Чаще всего принимают вероятность P = 0,950, которая означает, что только в 5 случаях из 100 ошибка может выйти за установленные границы. Задавшись конкретным уровнем вероятности, выбирают величину нормированного отклонения t по Приложению 1 и рассчитывают предельную ошибку выборки по формуле (67).
После расчета предельной ошибки находят доверительный интервал обобщающей характеристики ГС совокупности по формуле (70) – для среднего значения, и по формуле (71) – для доли единиц, обладающих каким-либо значением признака:
или ( – ) ( + )(70)
или ( – ) d ( + ) (71)
Следовательно, при выборочном наблюдении определяется не одно, точное значение обобщающей характеристики ГС, а лишь ее доверительный интервал с заданным уровнем вероятности. И это серьезный недостаток выборочного метода статистики.
Дата добавления: 2015-10-26; просмотров: 876;