Глава 6 Связь времен в изобретательстве
Nil novi sub luna.
Ничто не ново под луной.
Иногда изобретения проходят долгий путь до своей реализации и использования. Совсем недавно, возвращаясь с дачи на электричке, я был поражен махолету в виде птицы, который торговец запустил через весь вагон. Еще он сообщил, что это изобретение Леонардо да Винчи. Вернувшись домой, я действительно обнаружил в трудах гения Возрождения эту конструкцию [1] (рис. 6.1). Что интересно, сделана сегодняшняя птица была из тонких деревяшек и целлулоида, приводом служила закрученная резинка, никаких полупроводников, титановых сплавов и нанотехнологий, а значит, она вполне могла быть реализована в то время. Целлулоид, например, можно было заменить на рыбий пузырь, а резину – на жилы животных. То есть многие ученые XIX, XX веков, которые до 1903 года (первого полета братьев Райт, а еще раньше в 1882 году А. Можайского) считали невозможным создание летательных аппаратов тяжелее воздуха [2], могли быть посрамлены еще в XV веке. Справедливости ради здесь надо отметить, что С.В. Истомин в своей книге «Самые знаменитые изобретатели России» [3] приводит письменные свидетельства времен Ивана Грозного «… смерд Никитка боярского сына Лупатого холоп» сделал себе деревянные крылья на подобие птичьих и даже будто бы совершил в присутствии царя и большого количества народа несколько полетов вокруг Александровской слободы. За что первый русский Икар был, конечно же казнен. «Человек не птица, крыльев не имать… Аще же приставит себе аки крылья деревянны, противу естества творит. То не божье дело, а от нечистой силы. За сие дружество с нечистой силою отрубить выдумщику голову». Второе свидетельство из этой книги говорит, что кузнец Черная Гроза из села Ключи близ Ржева в 1729 году сделал крылья из проволоки и надевал их на руки.
Рис. 6.1. Леонардо да Винчи. Рисунок летательной машины. 1488 год
«На вострых концах надеты были перья самые мяхкия, как пух из ястребов и рыболовов, и по приличию на ноги, тоже, как хвост, а на голову, как шапка с длинными мяхкими перьями, летел так, мало дело ни высоко, ни низко, устал и спустился на кровлю церкви, но поп крылья сжег, а его едва не проклял». Также Истомин описывает, вероятно, первое использование воздушных шаров в России. В 1731 году в Рязани, за полстолетия до братьев Монгольфье, подьячий Крякутной «… сделал мяч большой, надул дымом поганым и вонючим, от него сделал петлю, сел в нее… Нечистая сила подняла его выше березы, и после ударила его о колокольню, но он уцепился за веревку, чем звонят, и остался тако жив». Дальнейшая судьба изобретателя не отличалась от судьбы первых русских воздухоплавателей: «Его выгнали из города, он ушел в Москву, ибо хотели закопать живого или сжечь».
Приведем еще несколько примеров из нашей истории. При Петре Первом Россия много воевала и, соответственно, многие русские изобретения касались военного искусства. Вот письмо к князю Ф.Ю. Ромадановскому, второму человеку в государстве: «Бьет челом Степки Иванова сын Чумич. Пожалуй меня милостию сделать образец от пушечного бою в защищение…» [4]. Это как бы заявка на изобретение. И через день (сейчас минимум 6 месяцев до начала рассмотрения заявки) Чумич стоял уже перед Ромадановским и отвечал ему, почему бумаги отправлены не по инстанции, а фактически сразу Петру Первому. Ответ был прост: «Преж всего такие три челобитные подавал в приказ, но дьяк Никита Поярков за то высек меня батогами». День в день пробился к Ромадановскому еще один изобретатель Микитка, Иванов сын, прозвищем Зайцев с предложением: «На человека сделать одеяние – кого ратных людей загонят в речку глубокую или мелкую, и тот человек в том одеянии и сам не мокнет, и пороху не намочит, и ружью порухи ниидучи возможно быть без вреда». Ромадановский дал обоим делам ход. Изобретатели, в частности, для одеяния запросили «яловые кожи, смолу, воск, слюду и оконных дел мастеров (ни много – ни мало первый в мире скафандр с прозрачным стеклом. Прим. авт ), к тому же делу надобе вина ведро, пива пять ведер». И великий государь Петр Алексеевич указал по «вышеписанной росписи, те все припасы купить и вино и пиво отпустить да к тому же Микитке и товарищу его, который делает от пушечной стрельбы щит, давать корм до тех пор, как они свое дело отделают». (Вот и авторское вознаграждение, которое не так просто получить в настоящее время). Чем окончилась эта история – неизвестно, но защита от пушечного боя получила продолжение. Грек Дмитрий предложил тому же Ромадановскому турами (плетеными корзинами), набитыми шерстью, защищать корабли от пушечных выстрелов (рис. 6.2). Прекрасный прототип навесных щитков из брони, используемых на танках в настоящее время. Дмитрием были предложены также передвижные туры с внутренним поворотным колесом с зазубринами. Чем не прототип гусениц танка. Но самое необычное изобретение Дмитрий описал следующим образом: «Сей вид к городовому или стенному приступу… Подошел ко граду неприятельскому близко (под защитой тех же передвижных туров)… на приступ идти, как на сем листу означено, чтоб медведи ученые шли по лестницам с учеными людьми. Тех медведей самых лютых, ровных выучить заранее, и по тому учению оные медведи человеком слушаются и разумеют, к чему их заставляют, и разговор человеков понимают». Об использовании этого изобретения ничего не сказано, однако в качестве его развития позже применялись и собаки с гранатами против танков, и дельфины против боевых пловцов и подводных лодок.
Рис. 6.2. Корабль с защитными плетеными корзинами, набитыми шерстью. Изобретение грека Дмитрия. Россия, XVIII век
А вот изобретения, созданные под руководством графа П.И. Шувалова (1710–1762), были внедрены во время войны с Пруссией в середине XVIII века. Секретные гаубицы с овальным каналом ствола на дульном срезе, мортиры с переменным диаметром ствола и гаубицы «близнята» с двумя или шестью стволами в одной люльке были с успехом применены на поле боя 12 августа 1759 года против прусской армии Фридриха Великого [5]. Еще одна связь времен также начинается с Леонардо да Винчи (1452–1519). Камеру‑обскуру (лат. camera obskura «темная комната») усовершенствованной формы он уже использовал в своих опытах в 1505 году (рис. 6.3) и даже подробно описал в «Трактате о живописи». (Справедливости ради необходимо отметить, что появление перевернутых изображений предметов в темной комнате упоминается еще в китайских рукописях IV века до н. э.). Благодаря открытию законов оптики был предложен способ изображения предметов в перспективе (рис. 6.4). Почернение хлористого серебра на свету было открыто Фабрициусом в 1556 году. В 1725 году русский дипломат Бестужев‑Рюмин наблюдал действие света на соли железа.
Рис. 6.3. Преломление лучей в камере‑обскуре. Гравюра. 1642 год
Рис. 6.4. Изображение предметов в перспективе. Гравюра. 1642 год
В 1802 году англичанин Веджвуд описал способ получения фотографического изображения на бумаге и коже, пропитанных раствором азотно– кислого серебра и только в 1839 году Даггер и Ниепс изобрели фотопроцесс, соединив воедино известные элементы [6]. И еще раз вспомним Леонардо да Винчи и его танк с шестеренчатым редуктором [1] (рис. 6.5). Основные идеи этого танка с успехом реализованы в настоящее время. А о связи танка Леонардо с танком Чингисхана, упоминаемым в истории, информация отсутствует. Скорее всего, Леонардо свой танк придумал самостоятельно. Раз мы сказали о танках, уместно сказать и о снарядах. Оригинальные разрывные ядра были придуманы Леонардо (рис. 6.6), а в XX веке успешно модернизированы В.А. Одинцовым в разрывные снаряды кругового поражения с подрывом в воздухе (патент RU2018779) [7].
Какие‑то изобретения совершенствовались во времени, а какие‑то сохранились в первоначальном виде, например, секстант 1660‑го года (рис. 6.7), который не изменился до настоящего времени.
Рис. 6.5. Леонардо да Винчи. Закрытая боевая машина («Танк»). 1485 год
Рис. 6.6. Леонардо да Винчи. Пушки со взрывающимися ядрами. 1490 год
Любопытная связь времен представлена в словаре Кариона Истомина (рис. 6.8), где в качестве предметов для обучения грамоте используются древнейшие изобретения – лук, ладья, лопата, лестница, которые не изменились за тысячи лет. Интересен также вариант не только появления и развития нового в науке и технике, но и возвращения к старому. В.И. Ковалев в своей книге «Путь к изобретению» приводит следующие примеры. Болты в начале делались методом ковки, потом их стали вытачивать из профильного прутка, а в настоящее время высадка металла (аналог ковки) прочно заняла свое место в производстве резьбового крепежа [8].
Рис. 6.7. Иоганн Гевелий у большого секстанта. Иллюстрация из книги Гевелия «Небесная машина». Издание 1660 года
Рис. 6.8. Буква «Л». Иллюстрация из «Букваря» Кариона Истомина. 1692 год
А вот корабли с колесной тягой были уже известны в середине XVI века (рис. 6.9), но реальное массовое воплощение они получили лишь в XIX веке. Или рули египтян, расположенные на носу их кораблей (рис. 6.10), нашли применение у некоторых современных яхт. В конце XIX века парусные суда были окончательно вытеснены пароходами, но и здесь можно наблюдать возвращение к старому.
Рис. 6.9. Корабль с колесной тягой. Иллюстрация из базельского издания «Десять книг по архитектуре» Витрувия. 1575 год
Рис. 6.10. Парусные корабли царицы Хатчепсут. Храмовый рельеф, XV век до н. э.
В настоящее время парусная тяга опять серьезно рассматривается как экономичная альтернатива двигателям внутреннего сгорания. Здесь также хочется привести пример талантливого русского изобретателя и великого путешественника Виктора Языкова, который на яхтах, построенных своими руками, не имеющих двигателя, на парусе с оригинальной системой управления пересек несколько раз Атлантику и обошел вокруг света. Его яхты изготовлены из традиционного материала, тысячелетиями используемого мореплавателями – дерева, но в оригинальном сочетании: кавказский каштан и дуб с бальсовым заполнителем. Кроме этого при строительстве яхт применялись углеволокно, углепластик, титановый сплав и уникальные технологии удаления газовых пузырей при полимеризации эпоксидной смолы. На примере Виктора Языкова наиболее отчетливо и эффективно видна связь времен в изобретательстве, приводящая к достижению максимального результата (рис. 6.11). И еще пример возвращения к известному в смежных областях. Подъемная сила крыла была рассчитана по собственным формулам еще в 1906 году Н.Е. Жуковским, но только спустя 50 лет этим заинтересовались судостроители и создали корабль на подводных крыльях [9]. А вот два примера использования давно известного. Из древней рукописи, датируемой 1435 годом, которую нашли ереванские ученые, узнаем: «…Считайте достойным памяти, что 900 строк написал, единожды обмакнув ручку…». По этому описанию ученые изготовили самопишущую ручку из двух бамбуковых половинок с пустотелым шариком, заполняемым древними чернилами [10], которую можно считать прообразом всех современных самопишущих ручек. А теперь об истории создания современной шариковой ручки. Чернильная самопишущая ручка была неприемлема для пилотов военной авиации, так как из нее вытекали чернила при перепаде давлений. Шариковая авторучка, которую в 1943 году запатентовал венгр Ласло Биро, решила эти проблемы. Правда, ее прототип был создан американцем Джоном Д. Лауда в 1882 году, а отдельные элементы были известны еще и из «армянской» авторучки. Но все знают, если шариковой ручкой писать лежа, то очень быстро она перестает работать, так как необходимо давление пишущего состава, направленное сверху вниз. Когда шла подготовка первых космических полетов, американцы потратили много сил, чтобы разработать очень сложную конструкцию космической шариковой ручки с системой подачи пасты под давлением. Наконец решение было найдено – это карандаш, которому более 500 лет, а если иметь в виду его аналоги, то они известны еще со времен верхнего палеолита. У меня нет сведений о разработках космических авторучек российскими учеными, однако известно, что бортовой журнал Гагарин заполнял карандашом.
Говоря о связи времен в изобретательстве, нельзя еще раз не упомянуть Николу Тесла – гениального ученого и изобретателя. Развитие техники в XX веке во многом связано с его работами в области переменно тока, многофазных систем, электродвигателей, люминесценции, беспроводной передаче энергии и информации. Очень интересны его разработки безлопастных турбин, судна на воздушной подушке, радиоуправляемых «телеавтоматов», летательных аппаратов вертикального взлета, прототипа лазера и огромного количества других изобретений в различных областях техники. «Придет время (писал он своей знакомой Кэтрин), когда, переплывая океан на корабле… при помощи карманного прибора… вы сможете говорить с друзьями, у которых дома будет точно такое же приспособление» [11]. Совсем свежий пример, связанный с беспроводной передачей энергии. Texas Instrument завершил разработку специализированного комплекса беспроводной зарядки аккумуляторов мобильных устройств bqTESLA, который позволит дистанционно заряжать МРЗ‑плейеры, мобильные телефоны, смартфоны, нетбуки и устройства GPS [12].
Патенты Тесла US1365547, СН54375, АТ60332, GB191024001, АТ13115, FR549261 и многие другие очень интересны с практической точки зрения до сих пор. И опять вспоминаем Леонардо да Винчи. Летательный аппарат вертикального взлета Тесла по патенту US1655114 (рис. 6.12) очень напоминает изобретение Леонардо (рис. 6.13). Но здесь следует заметить, что вопрос приоритета для Тесла имел очень важное значение.
Рис. 6.12. Патент Николы Тесла US 1655114. 1927 год
Рис. 6.13. Леонардо да Винчи. Рисунок летательной машины. 1488 год
Он глубоко изучал предшествующие разработки и всегда подчеркивал первоисточники. «Несмотря на то, что изобретения Тесла были в высшей степени оригинальными, и он называл себя «творцом новых принципов», ученый не считал себя автором хотя бы одной новой идеи, не привнесенной извне, например, из природного механизма или из работы других ученых» [11]. На выступлении в Лондоне 3 февраля 1892 года перед великими учеными Дж. Дж. Томпсоном, сэром Дж. А. Флемингом, сэром Дж. Дьюаром, сэром У. Круксом, лордом Кельвином и др. Тесла заявил: «Любое преимущество, которое может заключаться в моих изобретениях, основано на трудах многих ученых, присутствующих сегодня здесь, тех, которые могут предъявить больше требований к моим творениям, чем я сам. По крайней мере, одного я должен назвать. Это имя связано с самым блестящим изобретением: Крукс! Я уверен, что причиной моих успехов была эта очаровательная книжечка о лучистой энергии, которую я прочитал много лет назад» [11]. Кроме этого Тесла выдвинул идеи специальных приборов, проникающих в глубь материи до границ наномира. Именно он предсказал создание в будущем электронного микроскопа [13]. За 10 лет до Резерфорда Тесла сравнил атомные и субатомные частицы с Солнечной системой. И последний пример из многочисленных предвидений Тесла. Еще в конце XIX века он понял, что грязная питьевая вода является одной из самых серьезных опасностей для человечества, и пытался решить эту проблему. Ее решение до сих пор не найдено. (Для справки: 42000 человек погибает еженедельно от грязной питьевой воды, 80 % всех болезней в мире связано с небезопасной водой и элементарной антисанитарией [14]).
Как мы уже отмечали в главе 5, наука необходима для изобретательской деятельности, но и изобретения практически всегда необходимы для развития научных знаний. Без изобретения Антони ван Левенгуком (1632–1723) микроскопа на основе знаний о преломлении света (рис. 6.14) невозможна была бы микробиология. Кстати, на его примере хорошо прослеживается цепочка от изобретателя до ученого. Создание микроскопа позволило ему открыть эритроциты, бактерии и многое другое. Благодаря микроскопу Ж. Ингенгхауз в 1785 году открыл хаотичное движение частиц древесного угля в спирте. В 1828 году Роберт Броун наблюдал беспорядочное скачкообразное движение пыльцы растений в капле воды, названное броуновским движением, а это уже почти нанотехнология. Изобретение оптической трубы Липперсгеем в 1603 году послужило началом развития астрономии, что в скором времени позволило составить карту Луны и изучать пятна на Солнце (рис. 6.15, 6.16). Следует также заметить, что многие высокотехнологичные изобретения того времени стали использоваться в быту, например, достижения оптики были реализованы в виде волшебного фонаря (рис. 6.17).
Рис. 6.14. Таблица преломления световых лучей в линзах. Из трактата «Роза дома Орсини». Амстердам. 1630 год
Сильнейший импульс развитию естествознания дало изобретение книгопечатания (Германия, г. Майнц, 1440 г.) Иоганном Гуттенбергом (ок. 1399 – ок. 1468). Суть этого изобретения заключается в том, что слова собираются из отдельных букв на рамах. Особая сложность заключалась в выборе сплава, из которого изготавливались буквы. Он должен быть пластичным для исправления букв и одновременно достаточно прочным, чтобы они не истирались.
Рис. 6.15. Поверхность Луны. Из трактата «Роза дома Орсини». Амстердам. 1630 год
Рис. 6.16. Перемещение пятен на поверхности Солнца. Из трактата «Роза дома Орсини». Амстердам. 1630 год
Окончательно решить эту проблему смог ученик Гуттенберга Петр Шеффер (1430–1503) примерно в 1450‑х годах путем добавления сурьмы в свинец. Этот сплав для книгопечатания почти без изменений просуществовал в течение 400 лет [15]. Но у книгопечатания существовала связь времен и в прошедшее время. Печать отдельными буквами уже использовалась на Фестском диске минойской цивилизацией в XVII веке до н. э.
Рис. 6.17. Волшебный фонарь. Иллюстрация из книги Жана Ноле «Лекции по экспериментальной физике». Париж. 1748 год
Печать с деревянных досок была известна в Египте и Китае во II–IV веках, в XII–XIII веках эта технология пришла в Европу. При этом приоритет Гуттенберга оспаривается до сих пор. В Голландии изобретателем книгопечатания считают Лоренца Костера, во Франции – Прокопия Вальтфогеля, в Италии – Памфилио Кастальди, в Бельгии – Иоганна Брито [16]. Механические часы, производство бумаги, книгопечатание сыграли огромную роль в развитии естествознания. Компас, предположительно изобретенный в Китае во втором веке н. э. [17], примененный арабскими мореплавателями в XII веке и пришедший в Европу в XIII веке открыл эпоху великих географических открытий. Следует заметить, что, не смотря на такую долгую историю компаса, патенты на него продолжают получать до сих пор. Например, в патенте RU2338157 от 11.04.2007 за счет введения дополнительных магнитомягких элементов уменьшена погрешность курсоуказания. Есть также много и других патентов на компас, повышающих его надежность, расширяющих его функциональные возможности и т. п. А вот бумага, изобретенная в начале первого тысячелетия в Китае, потом в VIII веке перешедшая к арабам, а затем в Испанию, Италию, Англию и т. д., послужившая распространению научных знаний, в настоящее время из‑за всеобщей компьютеризации теряет свое значение, как, к сожалению, и книги, напечатанные на ней.
И еще одна связь древнейшего изобретения и науки сегодняшнего дня. Считается, что толчком к развитию эры автоматов послужил анализ действия ямы‑ловушки для поимки мамонтов и других зверей [18]. Яма выкапывалась на тропе, прикрывалась ветками, и зверь падал в нее, наступая на них. Яму‑ловушку без натяжки можно назвать первым автоматом, т. к. по определению автомат – это устройство, которое срабатывает по установленной человеком программе каждый раз, когда возникает определенное условие (например, когда животное наступает на ветки).
Для реализации изобретений нужны чертежи. В средние века уже научились делать подробные изображения механизмов. По рисункам 6.18 и 6.19 XVI века хоть сейчас можно изготавливать эти машины. Но и на миниатюре XII века (рис. 6.20) неплохо изображена суть процесса пусть даже в алхимии. Интересен также переход от алхимии к химии. Поначалу перегонка фосфора, изображенная на картине Джозефа Райта (рис. 6.21), носила налет таинственности, свойственный алхимии, а потом стала обыденным процессом.
И еще пример длительного использования средневековых изобретений. Греческие монастыри на скалах монашеского центра Метеора издавна использовали подъемники на тросах и лебедках для доставки людей и грузов (рис. 6.22). Прошло время, но и сейчас иногда можно увидеть то же самое (рис. 6.23).
Рис. 6.11. Яхта Виктора Языкова «Лагуна» в гонке одиночек через Атлантику. 1992 год
Рис. 6.20. Дистилляционный аппарат. Миниатюра из арабской рукописи XII века «Получение философского камня»
Рис. 6.21. Перегонка фосфора. Картина Джозефа Райта из Дерби. Англия. Около 1770 года
Рис. 6.23. Метеора, монастырь Варлаама. Дата основания 1350 г.
Рис. 6.24. Витражи дворцовой церкви Сент‑Шапель. Начало строительства 1242 год
Рис. 7.1. Вольт демонстрирует свое изобретение Наполеону. Роспись Дж. Бертини в Музее истории науки во Флоренции. 1880‑е годы
Рис. 9.1. Филипповские садки на Большом Соловецком острове. Сооружены в середине XVI века. (Фото А.А. Захарченко)
Рис. 9.3. Сухой док на выходе канала из Святого озера. Построен в 1801 году
Рис. 9.4. Закрытая валунная гавань на Большом Заяцком острове. Сооружена в середине XVI века. (Фото А.А.Захарченко)
Рис. 9.5. Соловецкий монастырь со стороны бухты Благополучия. Начало каменного строительства 1552 год
Рис. 9.6. Соловецкий монастырь со стороны Святого озера – изображен на российской купюре достоинством в 500 руб.
Рис. 9.7. Каменный лабиринт на Большом Заяцком острове. II тыс. до н. э.
Рис. 14.1. Наскальная живопись верхнего палеолита. Пещера Альтамира. Испания
Рис. 14.2. Встреча Иоакима и Анны. Фреска Джотто. 1304–1306 годы
Рис. 14.3. Фрагмент Гентского алтаря. Братья Хуберт и Ян ван Эйки. 1432 год
Рис. 14.4. Поклонение пастухов. Картина Эль Греко. 1610 год
Рис. 14.5. Крик. Картина Эдварда Мунка. 1893 год
Рис. 14.6. Невольничий рынок с исчезающим бюстом Вольтера. Картина Сальвадора Дали. 1940 год
Рис. 6.18. «Бесконечная цепь». Иллюстрация из альбома Жана Бессона «Театр математических и механических инструментов». Лион. 1579 год
Рис. 6.19. Машина для забивания наклонных свай. Иллюстрация из альбома Жана Бессона «Театр математических и механических инструментов». Лион. 1579 год
Рис. 6.22. Метеора, центр православного монашества. Греция. Известен с XI века
От средневековья переходим к относительно недавнему времени. Русский ученый Ю.В. Кондратюк в 20‑е годы прошлого века рассчитал траекторию полета на Луну и многие другие характеристики межпланетных сообщений, чем воспользовались американцы в программе «Apollo», кстати, со ссылкой на первоисточник и увековечили его имя. Гениальный изобретатель В.Г. Шухов связал своими изобретениями несколько поколений конструкторов и технологов в различных областях. Его называли «человеком‑фабрикой» и первым инженером России. Одно из его великолепных изобретений – это всем известная радиобашня на Шаболовке. В его арсенале также разработки нефтепроводов, организация водоснабжения Москвы, огромное количество строительных конструкций (180 стальных мостов) [19], а также средств их разрушения, мин и артиллеристских систем. Картина будет неполной, если не остановиться на двух великих открытиях XIX–XX веков и на том, как каждое из них связывает время и как они связаны между собой. Открытие по отношению к изобретению – это категория высшего порядка, но, по моему мнению, эта информация здесь уместна, так как почти каждое открытие порождает серию следующих за ним изобретений, о чем мы уже упоминали ранее. Начнем с более позднего открытия. Принцип матричного размножения биологических макромолекул (способ) был открыт Николаем Константиновичем Кольцовым (1872–1940) и опубликован им в 1928 году. Этот принцип он развивал, отталкиваясь от идей о молекулярной передаче наследственных признаков, высказанных Александром Андреевичем Колли (1840–1916). В конечном итоге матричный принцип явился базой для открытия двойной спирали ДНК, за что Джеймс Уотсон (род. в 1928 г.) и Френсис Крик (1916–2004) в 1962 г. получили Нобелевскую премию. Но в своих работах, что прискорбно, они не сослались на Кольцова. Как считает Симон Эльевич Шноль [20], идеи Кольцова им были известны, а что это его идеи – нет. Анализируя достижения биологии, в частности циклическую спираль ДНК, циклическую работу ферментов, биоритмы и т. п.; в других областях – циклические ядерные реакции в звездах, циклы ноосферы и многое другое, вплоть до философии Гегеля, В. Реутов и А. Шехтер полагают, что теория цикличности является основополагающей для живой и неживой материи [21].
Теперь возвращаемся назад во времени. В 1869 г. Дмитрий Иванович Менделеев (1893–1907) открыл закон периодической (цикличной) взаимосвязи химических элементов, на основании которого мы имеем таблицу, названную его именем. Можно также сказать, что Менделеев изобрел способ предсказывания еще неизвестных химических элементов и их свойств. Это открытие, по мнению многих ученых, является величайшим достижением всех времен и народов. По мнению Реутова и Шехтера, открытие периодического закона в наибольшей мере подтверждает всеобъемлющее значение принципа цикличности, который они ставят в один ряд с атомарным принципом строения вещества, а также с категориями пространства, времени и движения. И общая теория цикличности, по их мнению, могла бы стать основой для многочисленных обобщений в различных областях знаний. То есть значение Д.И. Менделеева как предтечи общей теории цикличности в будущем, возможно, только увеличится. Следует заметить, что работы с ДНК и периодический закон имеют непосредственное отношение к нанотехнологии, о которой будем говорить дальше.
Интересно, что первый патент в мире был выдан в 1449 г. Джону Уитноу на изготовление по собственной технологии цветного стекла. А для его окрашивания в разные цвета используются наночастицы металлов и их оксидов, следовательно, первый патент в мире относится сразу к нанотехнологиям. Также интересная связь времен прослеживается на цветных церковных витражах (см. рис. 6.24), окрашенных наночастицами золота. Несколько лет назад ученые Технологического университета Квинсленда, сообщает профессор Жу Хвай Йонга, установили, что эти частицы, возбуждаясь от солнечного света, формируют магнитные поля на поверхности витражей, которые расщепляют вредные для человека вещества, не создавая опасных побочных продуктов. То есть витражи являются фотокаталитическими очистителями воздуха [22]. Представим себе гипотетическую ситуацию, что в средние века была подана заявка на это изобретение с отложенным рассмотрением ее по существу из‑за недостаточной уверенности авторов в получении патента, а через несколько веков был найден новый технический результат (Жу Хвай Йонга), который можно было бы дослать в патентное ведомство и гарантированно получить патент на изобретение с приоритетом средневековья. Повторяю, эта ситуация гипотетическая, для нее жить надо не менее пятисот лет и откладывать экспертизу нужно было бы не на 3 года, как сейчас, а примерно на то же время. Тем не менее она наглядно показывает, что признания изобретатель при своей жизни не всегда может дождаться. И если явный технический эффект изобретения в настоящее время не объясним на основании имеющихся знаний, причислять такое изобретение сразу к лженауке не следует.
Интересно также, что первая привилегия на изобретение в России была выдана 2 марта 1748 года Антону Тавлеву, Терентию Волоскову и Ивану Дедову «на устроению фабрик для деланию красок по предложенному ими способу». Опять же, область, близкая к нанотехнологии.
Таким образом, связь времен от современных нанотехнологий прослеживается в средние века и даже дальше вплоть до неандертальцев (как бы даже не совсем людей), которые уже использовали красители в косметологии верхнего палеолита [23].
А древнеегипетские и древнегреческие косметологи уже использовали реальные наночасицы красителей, в том числе оксидов кремния, при окраске волос для придания им стойкости цвета. В дамасской стали были обнаружены нанотрубки, придающие ей прочность.
Фарфор Китая изготавливался из ультрадиспергированных составляющих. Та же задача встала и перед современными изобретателями. В настоящее время проблема нанодиспергирования (получения частиц с размерами менее 100 нм) по‑прежнему важна, и разработке нанодиспергаторов уделяется много внимания. Только недавно появились надежные и высокопроизводительные машины и способы для производства наночастичек в жидкой фазе (см., например, патенты RU2340656, RU2344874, RU2382682, RU2309140).
В заключение хочется привести цитату, очень наглядно показывающую связь времен. «Многие лица, недостаточно знакомые с математикой, считают, что роль машины сводится к получению результатов в цифровой форме, а природа самой обработки данных должна быть арифметической и аналитической. Это заблуждение. Машина может обрабатывать и объединять цифровые величины точно так же, как если бы они были буквами или любыми другими символами общего характера… Машина сможет писать музыку, рисовать картины, а кроме того, укажет науке такие пути развития, которые мы не в состоянии себе вообразить» [24]. Слова эти принадлежат Аде Лавлейс (1815–1852), изобретателю программирования, дочери английского поэта Байрона, и сказаны они были в середине XIX века.
Многое из приведенного выше подтверждает известную фразу царя Соломона из Екклесиаста: «Что было – то и будет, и что делалось – то и будет делаться, и нет ничего нового под солнцем». Но не стоит отчаиваться. Будем брать за прототипы «что делалось», дополнять их чужими, а если будет озарение и своими мыслями, писать заявки на изобретения и получать патенты.
Литература 1. Уоллес Р. Мир Леонардо. – М.: Терра, 1997, с. 117.
2. Потоцкий В.В. О взаимосвязи научных открытий и изобретений, как объектов интеллектуальной собственности. – Вестник Российской академии естественных наук, 2003, № 4, с. 5.
3. Истомин С.В. Самые знаменитые изобретатели России. – М.: Вече, 2000, – 469 с.
4. Эскин Ю. Люди живые и способные. Встречи с историей. – М.: Молодая гвардия, 1987, с. 129–133.
5. Константинова С. «Секретная гаубица» графа Шувалова. ИР. 2009. № 1.
6. Мухачев В. Как рождаются изобретения. – М.: Московский рабочий. 1968, с. 132–135.
7. Сердюков О. Помощник бога войны. – ИР, 2010, № 5.
8. Ковалев В.И. Путь к изобретению. – Л.: Лениздат, 1967, с. 33–34.
9. Ковалев В.И. Техническое изобретательство и его приемы. – Л.: Лениздат, 1965, с. 40.
10. История. Научно‑популярные очерки. – М.: Молодая гвардия, 1985, с. 94.
11. Сейфер Марк. Никола Тесла – повелитель Вселенной. – М.: Яуза, Эксмо, 2008, с. 173, с. 121, 261.
12. Васильев А. Возможные направления использования нано– и микроэлектроники. – Наноиндустрия, 2010, № 4, с. 21.
13. Абрамян А.А., Балабанов В.И., Беклемышев В.И. Основы прикладной нанотехнологии. – М.: Издательский дом «МАГИСТР‑ПРЕСС», 2007, с. 18.
14. Хенрик Эк. Вода, вода, кругом вода… – Metalworking world, 2011, № 1, с. 35.
15. Вернадский В.И. Избранные труды по истории науки. – М.: Наука, 1981, с. 95.
16. Лихтенштейн Е.С. Слово о науке. – М.: Знание, 1981, с. 210.
17. Кудрявцев С.П. Курс истории физики. – М.: Просвещение, 1982, с. 41.
18. Пестов С. Второе пришествие: нанотехнология. – М.: Зеленоград. Издательство «Стил», 1977, с. 68–69.
19. Рогов Е. Памятник Шухову на Сретенском бульваре. – ИР, 2009, № 2.
20. Шноль С.Э. Герои, злодеи, конформисты отечественной науки. – М.: Книжный Дом «ЛИБРОКОМ», 2009, с. 159.
21. Реутов В.П., Шехтер А.В. Как в XX веке физики, химики и биологи отвечали на вопрос: что есть жизнь? – Успехи физических наук, апрель 2010, т. 180, № 4, с. 393–414.
22. Российский электронный наножурнал. Новости нанотехнологий. 18.09.2008. Древние нанотехнологии – церковные витражи.
23. Кейт Вонг. Закат неандертальцев. – В мире науки, 2009. № 10, с. 16–22.
24. Вовк Е.Т. Ада Лавлейс – гений в обличье феи. – Потенциал, 2010, № 12, с. 23.
Дата добавления: 2015-10-21; просмотров: 1009;