Классическое нормальное распределение
Нормальное распределение или распределение Гаусса является наиболее универсальным, удобным и широко применяемым.
Часто предполагается, что наработка до отказа подчинена нормальному распределению (нормально распределена) и плотность распределения отказов (ПРО) описывается выражением:
(6.1) |
где T0 и S – параметры распределения, соответственно, МО и СКО, значения которых могут быть определены по результатам испытаний. Т.е. 0, = S2- оценки средней наработки и дисперсии.
Графики изменения показателей безотказности при нормальном распределении приведены на рис. 6.1.
Смысловое значение параметров Т0 и S нормального распределения следует из графика f(t). Очевидно, что Т0 является центром симметрии распределения, поскольку при изменении знака разности (t - T0) выражение (6.1) не меняется, но функция f(t) (ПРО) из возрастающей превращается в убывающую и при t = Т0 достигает своего максимума.
Рис. 6.1
При сдвиге Т0 влево/вправо по оси абсцисс, кривая f(t) смещается в ту же сторону, не изменяя своей формы. Таким образом, Т0 является центром рассеивания случайной величины t, т. е. математическим ожиданием (МО).
Параметр S характеризует форму кривой f(t), т. е. рассеивание (разброс) случайной величины t относительно МО. Кривая ПРО f(t) тем выше и острее, чем меньше S.
Изменение графиков P(t) и (t) при различных СКО наработок (S1 < S2 < S3) и Т0 = const приведено на рис. 6.2.
Используя полученные ранее (разделы 3, 4) соотношения между показателями надежности, можно записать выражения для P(t); Q(t) и (t) по известному выражению (6.1) для f(t). Однако, в этом случае получаются громоздкие интегральные выражения, поэтому для практических расчетов показателей надежности вычисление интегралов заменяется использованием унифицированных таблиц. С этой целью переходят от случайной величины t к другой случайной величине
(6.2) |
распределенной нормально с параметрами, соответственно, МО и СКО M{X} = 0 и S{X} = 1 и плотностью распределения
Рис. 6.2
(6.3) |
Выражение (6.3) описывает плотность так называемого нормированного нормального распределения (рис. 6.3).
Рис. 3
Функция распределения случайной величины X запишется
(6.4) |
а из симметрии кривой f(x) относительно МО M{X} = 0, следует, что f(-x) = f(x), откуда F(-x) = 1 - F(x).
В справочной литературе приведены расчетные значения функций f(x) и F(x) для различных x = (t - Т0)/S.
Показатели безотказности объекта через табличные значения f(x) и F(x) определяются по выражениям:
f(t) = f(x)/S; | (6.5) | |
Q(t) = F(x); | (6.6) | |
P(t) = 1 - F(x); | (6.7) | |
(t) = f(x)/S(1 - F(x)). | (6.8) |
В практических расчетах часто вместо функции F(x) пользуются функцией Лапласа, представляющей распределение положительных значений случайной величины X в виде:
(6.9) |
Очевидно, что F(x) связана с (x) следующим образом:
(6.10) |
Как и всякая функция распределения, функция (x) обладает свойствами:
(x)(- ) = -0,5; (x)() = 0,5; (x)(-x) = - (x) .
В литературе могут встретиться и другие выражения для (x), поэтому, какой записью (x) пользоваться – это дело вкуса.
Показатели надежности объекта можно определить через (x), используя выражения (6.5) - (6.8) и (6.10):
Q(t) = 0,5 + (x) ; | (6.11) | |
P(t) = 0,5 - (x) ; | (6.12) | |
(t) = f(x)/S(0,5 - (x)) . | (6.13) |
Чаще всего при оценке надежности объекта приходится решать прямую задачу – при заданных параметрах Т0 и S нормально распределенной наработки до отказа определяется тот или иной показатель безотказности (например, ВБР) к интересующему значению наработки t.
Но в ходе проектных работ приходится решать и обратную задачу – определение наработки, требуемой по техническому заданию, ВБР объекта.
Для решения подобных задач используют квантили нормированного нормального распределения.
Квантиль – значение случайной величины, соответствующее заданной вероятности.
Обозначим: tp– значение наработки, соответствующее ВБР P;
xp – значение случайной величины X, соответствующее вероятности P.
Тогда
при x = xp; t = tp, получаем tp= Т0 + xp S.
tp, xp – ненормированные и нормированные квантили нормального распределения, соответствующие вероятности P.
Значения квантилей xp приводятся в справочной литературе для P 0,5.
При заданной вероятности P < 0,5 используется соотношение
xp = - x1-p .
Например, при P = 0,3
x0,3 = - x1- 0,3 = - x0, 7
Вероятность попадания случайной величины наработки T в заданный интервал [t1, t2] наработки определяется:
(6.14) |
где x1 = (t1 - Т0)/S , x2 = (t2 - Т0)/S .
Отметим, что наработка до отказа всегда положительна, а кривая ПРО f(t), в общем случае, начинается от t = - и распространяется до t = .
Это не является существенным недостатком, если Т0 >> S, поскольку по (6.14) нетрудно подсчитать, что вероятность попадания случайной величины T в интервал P{Т0 - 3S < T < Т0 + 3S} 1,0 с точностью до 1%. А это означает, что все возможные значения (с погрешностью не выше 1%) нормально распределенной случайной величины с соотношением характеристик Т0 > 3S, находятся на участке Т0 ± 3S.
При большем разбросе значений случайной величины T область возможных значений ограничивается слева (0, ) и используется усеченное нормальное распределение.
Дата добавления: 2015-10-09; просмотров: 1365;