Лекция 9. Свойства матрицы проводимости:

Свойства матрицы проводимости:

1. При отсутствии в сети трансформаторов с комплексными коэффициен-тами трансформации, матрица является симметричной, то есть выполняется принцип взаимности Yij = Yji ;

2. Матрица является слабозаполненной, так как содержит большое коли-чество нулевых элементов. Причина - если узлы не связаны между собой, то их взаимная проводимость равна нулю (yij = 0), а в реальных сетях каждый узел связан с небольшим числом узлов;

Свойства 1 и 2 используются для компактного хранения матрицы проводимостей в памяти ЭВМ (хранятся только ненулевые элементы и их координаты). Количество собственных проводимостей равно количеству узлов в сети, количество взаимных проводимостей равно числу ветвей ( с учетом симметричности матрицы).

3. Матрица проводимостей неособенная, то есть её определитель , следовательно она имеет обратную матрицу.

 

Пример: Составить матрицу проводимостей для схемы

  1 2 3 4 5 6 7 8
1 y11 -y12 -y14 -y17
2 -y21 y22 -y23
3 -y32 y33 -y35
4 -y41 y44 -y45
5 -y53 -y54 y55 -y56 -y58
6 -y65 y66 -y68
7 -y71 y77 -y78
8 -y85 -y86 -y87 y88

 

Собственные проводимости узлов схемы:

В памяти ЭВМ запоминается верхняя половина матрицы (её ненулевые элементы).

 

 

Система уравнений (4) – это система уравнений узловых напряжений в форме баланса токов, записана для всех узлов сети и содержит n уравнений относительно n неизвестных напряжений в узлах. В таком виде она не может дать искомое решение для всех комплексных напряжений, так как:

1. Если является решением ( i= 1 … n ) системы уравнений, то тоже является решением, так как это соответствует пово-роту всех векторов напряжения на угол . Множитель входит во все решения и может быть сокращен. Задавая разные значения можем получить множество решений системы уравнений;

2. Если в узлах не задать (не зафиксировать) ни од-ного напряжения, то можно получить решение, не имею-щее практического смысла (например, отрицательные напряжения в узлах, либо напряжения не соответствую-щие своему классу напряжений и т. д.). При этом баланс токов в узлах будет соблюдаться.

 

Решение этой проблемы: в сети выбирают один (или несколько) узлов, в которых фиксируют модуль и угол напряжения. Это узлы с фиксацией векто-ра напряжения (ФВ). Такие узлы называются базисными или опорными по напряжению = const. В сети должен быть хотя бы один такой узел. Во всех остальных узлах схемы напряжения рассчитывается относи-тельно опорного. В схеме им соответствуют, как правило шины электростан-ций или мощных подстанций. Как правило опорный узел по напряжению сов-падает с балансирующим по мощности. Для упрощения расчетов часто задают .

Задание в некоторых узлах сети векторов напряжения, т.е. выделение в схеме сети опорных узлов с ФВ (которые совпадают с балансирующими) приводит к уменьшению числа неизвестных в системе уравнений (4) и необхо-димости исключения из неё уравнений, соответствующих этим узлам (т.к. уменьшается число неизвестных напряжений).

 

Пример:

Запишем для схемы систему уравнений вида (4):

 

 

Система уравнений в матричной форме:

 
 

 


 

 

В качестве спорного узла выберем узел 4. Напряжение в нём задано. Нужно исключить из системы уравнение, соответствующее опорному узлу – уравнение 4. Это соответствует четвёртой строке в матрице и в вектор – столб-це. В матрице выделим столбец и строку, соответствующие опорному узлу – номер 4 – они содержат его взаимные проводимости с другими узлами схемы.

В матрице и векторах выделяются блоки и субвектора:

YiОП – вектор – столбец взаимных проводимостей между узлами сети и опорным узлом;

YОПj – вектор – строка взаимных проводимостей между опорным узлом и другими узлами сети;

Yнеполная матрица проводимостей, получаемая из полной удалением строк и столбцов соответствующих опорным узлам;

YОПОПсобственная проводимость опорного узла;

- заданные напряжения в опорных узлах и токи в них;

- вектор искомых напряжений в узлах сети;

- вектор заданных токов в узлах сети.

 

С учётом этого в блочной форме система уравнений может быть записана:

.

 

Удаляем элементы (блоки), соответствующие уравнениям опорных узлов - YОПj, YОПОП, IОП. Тогда по правилам умножения блочных матриц получаем:

.

Переносим известные величины в правую часть:

.

Это система уравнений установившегося режима в матричной форме.

Это уравнения в виде баланса токов. Линейные уравнения.

 

В результате преобразований можно получить другой вид этой системы урав-нений:

.

 

При задании в узлах сети нелинейных источников тока (генераторы или нагрузки с постоянной мощностью), установившийся режим описывается нели-нейными уравнениями:

Эти уравнения – нелинейные уравнения установившегося режима в форме баланса тока. При задании в узлах нелинейных источников тока установив-шийся режим сети можно описать, также, нелинейными уравнениями в форме баланса мощности.

В результате преобразований уравнения баланса мощности в матричной форме будут иметь вид:

.

 

 

Здесь - диагональная матрица, на главной диагонали которой рас-

положены сопряженные комплексы напряжений;

S - заданные мощности в узлах.

 

 








Дата добавления: 2015-10-05; просмотров: 3214;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.015 сек.