Матричная форма записи уравнений установившегося режима

 

 

Уравнения установившегося режима в форме баланса токов:

, (1)

где - напряжение в рассматриваемом i – м узле и напряжения в смежных узлах j . Это неизвестные величины;

yij – взаимная проводимость узлов

;

yijсобственная проводимость i – го узла

(2)

 

уі0

 

 

- поперечная проводимость участков подходящих к i – у узлу:

(3)

 
 


Поперечные проводимости транс- Поперечная проводимость

формирующих участков линии

 

yi0собственная проводимость устройств, подключенных непосредст-венно в i – м узле;

- заданные мощность или ток.

Уравнение (1) сформировано на основе метода узловых потенциалов, за-писано для одного і – го узла сети. Для схемы, состоящий из n узлов записы-вается n таких уравнений с n комплексными неизвестными.

 

Запишем систему уравнений вида (1) для абстрактной схемы электрической сети, состоящей из n узлов:

 

(4)

 

 

Эта система уравнений описывает режим роботы ЭС в целом. Запишем эту систему в матричной форме:

 

(5)

 


С учетом обозначений система (5) примет вид:

. (6)

 

Здесь Y – матрица коэффициентов при неизвестных – матрица собственных

и взаимных проводимостей (матрица проводимостей);

- вектор неизвестных – вектор напряжений;

D – диагональная матрица, на главной диагонали которой расположены

величины, обратные сопряженному комплексу напряжений в узлах.

Остальные элементы матрицы - нули;

- вектор сопряженных комплексов заданных мощностей в узлах;

- вектор заданных токов в узлах.

 

Матрица собственных и взаимных проводимостей Y

Ее элементами являются проводимости узлов и участков. На главной диа-гонали расположены собственные проводимости узлов, определяемые по фор-муле (2). Вне главной диагонали - взаимные проводимости узлов, взятые с об-ратным знаком. Матрица квадратная, симметричная.

Если узлы сети соединены между собой, то их взаимная проводимость отлична от нуля ( Yij = 1/Zij). Если узлы между собой не связаны, то Yij = 0.

Т.к. реальные сети имеют большое количество узлов, а каждый узел имеет не-большое число связей с другими узлами (до 10), то строки матрицы и матрица в целом содержат большое количество нулевых элементов (матрица слабоза-полненная или разреженная).

Каждая строка матрицы соответствует одному узлу сети и его связям.

По структуре матрицы проводимостей можно определить схему сети и ее параметры. То есть матрица проводимостей представляет собой модель схемы электрической сети.

 

Пример: Дана матрица проводимостей. По её структуре определим схему

сети:

  1 2 3 4 5
1 x x x
2 x x
3 x x
4 x x x x
5 x x

 

 

 
 


 

 

Уравнения (5) и (6) представляют собой математическую модель режи-ма работы ЭС в общем виде.

 

 








Дата добавления: 2015-10-05; просмотров: 956;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.