Лекция 8. В практических расчетах комплексные уравнения (9) и (11) часто исполь-зуются в преобразованном виде
В практических расчетах комплексные уравнения (9) и (11) часто исполь-зуются в преобразованном виде. Комплексные величины в их составе пред-ставляются в виде действительных и мнимых составляющих. В результате, комплексное уравнение распадается на два действительных уравнения.
Преобразуем уравнение (11), представив неизвестные напряжения (комп-лексные величины) Ui ,Uj в прямоугольных координатах:
Проводимости тоже представим в виде составляющих:
(12)
Мощность: ;
Подставим эти значения в (11):
Выполняем преобразование: раскрываем скобки, группируем, разделяем действительную и мнимую части уравнения. Получаем два действительных
уравнения установившегося режима в форме баланса мощностей, записанных в прямоугольных координатах:
(13)
Неизвестные величины в них - составляющие напряжений Ui’, Ui”, Uj’, Uj”.
Уравнение (13) описывает баланс активной и реактивной мощности в одном i – м узле сети. Для сети, состоящей из n узлов нужно записать 2n таких урав-нений. Неизвестными являются составляющие напряжения .
Представим уравнение (11) в полярных координатах. Для этого комплексы неизвестных напряжений запишем в соответствии с формулой Эйлера:
.
Здесь Ui – модуль, - фаза напряжения .
(14)
Подставим (14) в (11) учетом того, что
(15)
Преобразуем уравнение (15): раскрываем скобки, группируем, разделя-ем действительные и мнимые части, меняем местами
(16)
Это уравнение установившегося режима в форме баланса мощности,
записанное в полярных координатах. Неизвестные величины в нём - модули напряжений и фазы напряжений .
Это два действительных уравнения, записанные для одного i-го узла схемы. Определяют баланс активной и реактивной мощности в нем.
Существуют и другие формы записи уравнений установившегося режима.
Пример:
Составить уравнения в форме баланса токов для каждого из узлов сети
Составим уравнение для первого узла.
Для него i=1; j=0,2,3; n=3;
- собственная проводимость 1 – го узла.
Для узла 0: i=0; j=1; n=1;
Для узла 2: i=2; j=1,3; n=2;
Для узла 3: i=3; j=1,2; n=2;
Уравнения в форме баланса мощностей можно получить, если умножить каждое из полученных уравнений на сопряженный комплекс соответствующе-го напряжения.
Запишем уравнение для 1 – го узла в прямоугольных координатах:
Для узлов 2 и 3 уравнения в прямоугольных координатах записать самостоятельно.
Уравнения для 1-го узла в полярных координатах:
i=1; j=0,2,3; n=3;
Используем формулу (16):
Дата добавления: 2015-10-05; просмотров: 969;