КЛАССИЧЕСКИЙ АНАЛИЗ РОДСТВЕННЫХ КОРРЕЛЯЦИЙ

Сходство родственников, принадлежащих к разным поколениям (предки — потомки), обычно оценивается коэффициентом корреля­ции Пирсона, который называют также межклассовым коэффициен­том корреляции. В случае близнецов и сиблингов применяется коэф­фициент внутриклассовой корреляции, подсчитываемый на основе дисперсионного анализа:

где х1' и х1j — значения одного и того же признака у близнецов одной пары.

Использование внутриклассовой корреляции в данном случае обус­ловлено тем, что нет генетического критерия для отнесения того или иного члена пары в тот или другой вариационный ряд. В табл. 8.4 при­веден пример вычисления внутриклассовой корреляции для МЗ близ­нецов.

Таблица 8.4 Вычисление внутриклассового коэффициента корреляции

 

 

Значение признака х1 - х2 (х1 - х2) х1+ х2 (х1 + х2)
Пары близнец 1 х1 близнец
2 i 4 4 i 2 1 i -2 1 1 4 1 1 J 25 9
СУММЫ 11 41 439          

W = 11/2/5 = 1,1; 5 = {[439-41/5]/2/4-1,1}/2 = {[439-1681/5]/8-1,1}/2 =

= 5,875 R = 5,875 /(5,875 +1,1) = 0,842.

Внутриклассовый коэффициент корреляции, в отличие от меж­классового, не изменяется при перемене мест членов пары.

При подсчете коэффициента корреляции обычно вычисляется и ошибка его измерения. Это важно, так как наличие ошибок измерения ведет к иска­жению коэффициента корреляции и, следовательно, при проведении генети­ческого анализа по коэффициентам корреляции между родственниками бу­дут получаться смещенные оценки компонентов дисперсии признака. В свя­зи с этим производится поправка коэффициентов корреляции на дисперсию ошибки измерения, для чего проводят повторные измерения признаков у од­них и тех же индивидов. Дисперсия ошибки измерения равна внутрипарной дисперсии (V0 = W), вычисленной по повторным измерениям. Когда диспер­сия ошибки подсчитана, коррекция межклассовых коэффициентов корреля­ции осуществляется с использованием следующей формулы:

R = R [1+Ve1 /(S12 - Ve1 )][1+Ve2 /(S22 - Ve2)],

где Я — исходный коэффициент корреляции между первыми и вторыми род­ственниками по изучаемому признаку: Sb S2 — дисперсии признака у соот­ветствующих родственников.

Использование индексов 1-й (например, родители) и 2-й (например, дети) групп родственников обусловлено тем, что указанные группы могут отличать­ся друг от друга по изучаемым признакам вследствие половых, возрастных и тому подобных различий.

Коррекция коэффициентов внутриклассовой корреляции (между близне­цами, сиблингами) на дисперсию ошибки измерения проводится по формуле:

R = B/(B + W-Ve)

где В — межпарная дисперсия, W— внутрипарная дисперсия. Если приведен­ные в табл. 8.5 данные рассматривать как повторные измерения одних и тех же индивидов, то дисперсия ошибки измерения VС = W = 1,1, а внутриклассовая корреляция в данном случае соответствует коэффициенту воспроизводимости.

Корреляции разных типов родственников несут в себе специфи­ческую информацию о разных составляющих фенотипической дис­персии в популяции (табл. 8.5). Например, при изучении пары прием­ный родитель — усыновленный ребенок можно получить оценку вклада

13*

общей семейной и родительско-детской среды. При изучении же только корреляций биологических родителей и детей разделить составляю­щие генетической аддитивной дисперсии и родительско-детской сре­ды невозможно, поскольку их объединяет и общая среда, и 50% об­щих генов. Этот метод применим только в сочетании по крайней мере с одним другим методом, который позволил бы разделить влияния генетических и средовых компонентов.

Таблица 8.5

Вклады аддитивного (Va), доминантного (Vd) и общего средового (VEC) компонентов фенотипической дисперсии в фенотипические корреляции разных типов родственников

Типы родственников VA VD Vec
Биологические родители и дети 1/2 Vc(bpo)
Приемные родители и дети VС(АРО)
Сиблинги с одним общим родителем 1/4 Cc(hs)
Сиблинги 1/2 1/4 VС(FS)
Двуяйцевые близнецы 1/2 1/4 VC(DZ)
Однояйцевые близнецы 1,0 1,0 Vc(mz)

Примечание. Здесь и далее:

ВРО — родители Х дети (biological parent-offspring); AP O — приемные родите­ли Х дети (adopted parent-offspring); HS — полусиблинги (half-sibling); FS — пол­ные сиблинги (full-sibling); DZ— ДЗ близнецы (dizygotic twins); MZ — МЗ близ­нецы (monozygotic twins).

С целью максимизации информации, полученной при анализе раз­ных типов родственников, ученые совмещают несколько методов в рам­ках одного исследования. Выбор методов для исследования того или иного признака является специальной задачей. Главное правило здесь заключается в том, что количество независимых исходных статистик (т.е. количество корреляций между родственниками) должно превышать количество неизвестных в системе уравнений. Если это правило не выдерживается, система уравнений однозначного решения не имеет.

Например, представим себе, что мы исследуем по некоторому признаку биологические семьи, каждая из которых растит по крайней мере двух детей. Соответственно, мы можем определить корреляции по исследуемому признаку как между родителями и детьми, так и между сиблингами в данных семьях. Любая из этих пар будет иметь в среднем 50% общих генов, что позволяет, используя информацию из табл. 8.5, записать следующую систему уравнений:

ГВРО ~1 ' 2 * А ~"~ *С (ВРО) J ' " Р '

rFS ~Y ' 2 VA ' '4 V D +V C(FS) ] / V P .

Чем больше различных пар родственников включено в анализ, тем больше компонентов дисперсии может быть определено однозначно и тем более сложные и разветвленные модели могут оцениваться.

В качестве иллюстрации рассмотрим два метода, используемых для разделения генетической и средовой составляющих фенотипической дисперсии в популяции (подробнее о методах психогенетики — в гл. VII).

Метод близнецов. Этот метод, без сомнения, был и до сих пор является одним из ведущих методов психогенетики. Классический ва­риант метода близнецов основывается на том, что монозиготные (МЗ) и дизиготные (ДЗ) близнецы характеризуются различной степенью генетического сходства, в то время как их среда может считаться при­близительно одинаковой. На языке составляющих фенотипической дисперсии (см. табл. 8.2 и 8.3) это можно выразить так:

МЗ близнецы представляют собой идентичные генетические ко­пии друг друга, поэтому теоретически корреляция МЗ близнецов по признаку, вариативность которого в популяции находится полностью под генетическим контролем, должна равняться 1,0. Разницу между 1,0 и реальной корреляцией МЗ близнецов можно объяснить влияни­ями индивидуальной среды или ошибки измерения (компонент Vn содержит в нерасчлененном виде обе эти составляющие).

Отметим, что приведенные закономерности соотношения МЗ и ДЗ близнецов справедливы только при следующих условиях (частично речь о них шла в гл. VII):

1. Центральным допущением при использовании метода близне­цов в любом его варианте является допущение о равенстве среды МЗ и ДЗ близнецов. Важно отметить, что оно подразумевает не одинако­вость близнецовых сред, а тот факт, что распределение (частота встре­чаемости и разброс) средовых компонентов монозиготных близнецов не превышает разнообразия сред дизиготных. Правомерность этого допущения до сих пор исследуется и обсуждается психогенетиками; если оно не справедливо, то получаемые этим методом оценки коэф­фициента наследуемости искажены. Как уже говорилось, это допуще­ние касается не всей близнецовой среды, а только тех ее аспектов, которые связаны с изучаемым признаком (если они известны).

2. VgxЕ = 0, т.е. принимается допущение об отсутствии ГС-взаи­модействия. Заметим, что в некоторых случаях такое допущение впол­не правомерно, в большинстве же случаев оно требует тщательной эмпирической проверки.

3. Cov(g)(e) = 0, т.е. принимается допущение об отсутствии геyотип-средовой ковариации. Прямо проверить это допущение в рамках клас­сического близнецового метода невозможно. Поэтому, как и в случае двух предыдущих допущений, отсутствие ГС-ковариации и корреля­ции при использовании классического метода близнецов принимает­ся на веру.

4. Ассортативность по исследуемому признаку не отличается от нуля (т.е. ц. = 0). Как уже говорилось, это допущение для большинства исследуемых в психогенетике признаков неверно: неслучайность под­бора супружеских пар у человека — скорее правило, чем исключение. Поэтому допущение об отсутствии ассортативности надо обязательно проверять (в том случае, если в литературе отсутствуют необходимые сведения) по данным о супружеских парах. В общем случае корреля­ция между супругами включает в себя компонент, обусловленный ассортативностью брака, и компонент, обусловленный влиянием се­мейных систематических средовых факторов. Самым простым и на­дежным способом проверки этого допущения является обследование родителей близнецов. Не имея данных о родителях (т.е. корреляций между родителями по исследуемому признаку), исследователь не мо­жет «развести» эффекты ассортативности и эффекты семейной среды. Наличие же значимой ассортативности повышает возможность полу­чения ДЗ одинаковых генов от обоих родителей (у МЗ и без этого фактора их 100%), повышая rДЗ и тем самым снижая разность rМЗ - rДЗ и, следовательно, величину коэффициента наследуемости (о нем речь пойдет ниже).

5. В генетическом механизме изучаемого признака отсутствуют эпи-статические взаимодействия (Vt). Это условие принимается как долж­ное практически во всех психологических исследованиях (многие ис­следователи принимают данное допущение a priori, даже не обсуждая его правомерность). Однако в ситуациях, когда это допущение не-

справедливо, оценки составляющих фенотипической дисперсии мо­гут быть сильно искажены, поскольку эпистатическое взаимодействие генов может значительно уменьшить генетическое сходство ДЗ близ­нецов, тем самым увеличивая разницу между rМЗ и rДЗ и приводя к завышенным оценкам коэффициента наследуемости.

Однако даже в том (весьма неправдоподобном!) случае, когда ис­следуется психологический признак, для которого соблюдаются все вышеперечисленные условия, оценить все четыре компонента феноти­пической дисперсии (VA,Vd ,Vc ,VN ) в рамках метода близнецов невоз­можно, так как четыре независимых величины не могут быть определе­ны из трех линейных уравнений. Ученые, тем не менее, сделав несколь­ко упрощающих допущений, разработали несколько способов оценки коэффициента наследуемости на основе метода близнецов. Отметим, что ни один из этих методов не является «правильным» или «непра­вильным» — каждый из них обладает определенными достоинствами и недостатками. Рассмотрим кратко хотя бы три наиболее часто встре­чающихся в литературе метода оценки коэффициента наследуемости.

КОЭФФИЦИЕНТ ХОЛЬЦИНГЕРА

К. Хольцингер предложил следующую формулу для оценки насле­дуемости:

КОЭФФИЦИЕНТ ИГНАТЬЕВА*

В качестве первой оценки величины генетической составляющей фенотипической дисперсии часто используется коэффициент Игна­тьева, вычисляемый следующим образом:

* Данный способ оценки генетического компонента дисперсии и зарубежной психогенетике связан с именем Д. Фальконера, работа которого вышла в I960 г. Однако этот коэффициент был предложен еще в 1934 г. М.В. Игнатьевым. Кратко об этом см. во Введении, а также в работах В.М. Гиндилиса [97] и Б.И. Кочубея [132, гл. I]. В формуле Игнатьева используются иные символы, но, поскольку в современной науке утвердились приводимые далее обозначения, будем пользо­ваться ими и мы. В приводимой ниже формуле Еобщ — то же, что ЕС, a Eинд — то же, что EN в предыдущем тексте (см. табл. 8.3).

При наличии доминантного компонента дисперсии VD оценка наследуемости будет завышена.

Очевидно, что влияние любых факторов, изменяющих разницу между корреляциями двух типов близнецов (например, завышение корреляции между МЗ близнецами, возникающее в результате дей­ствия специфической для этого типа близнецов среды), будет влиять на эту оценку наследуемости. Хотя в последние годы появились и все чаще употребляются более современные и сложные методы статисти­ческого анализа, этот коэффициент, в силу своей аргументированно­сти и простоты получения, остается в арсенале психогенетики. Более того, Р. Пломин предложил с помощью этой формулы оценивать — тоже в первом приближении, конечно, — и долю средовых компо­нентов:

где С — значение со-близнеца по исследуемому признаку (данный метод подразумевает выделение в каждой паре одного близнеца — условного пробанда, тогда второй близнец называется со-близнецом); Р — значение близнеца-пробанда по тому же признаку; R — коэффи­циент родства (1 для МЗ и 0,5 для ДЗ близнецов); PR — произведение

Правда, в оценку индивидуальной среды неизбежно включается часть дисперсии, вызванная ошибкой измерения. Возможность кор­рекции этого дефекта обсуждена выше.

МЕТОД ДЕ ФРИЗА И ФУЛКЕРА (ДФ-МЕТОД)

Дж. де Фриз и Д. Фулкер разработали две регрессионные модели: 1) классическую регрессионную модель, в которой частная регрессия значения со-близнеца на значение близнеца—условного пробанда и коэффициент родства представляет собой тест генетической этиоло­гии исследуемого признака, и 2) расширенную регрессионную мо­дель, предоставляющую прямое свидетельство того, насколько инди­видуальные различия внутри исследуемой группы объясняются гене­тическими и средовыми влияниями. Эти два регрессионных уравнения записываются следующим образом:

значения пробанда по исследуемому признаку на коэффициент род­ства; А — константа регрессионного уравнения.

Решение этих уравнений позволяет оценить следующие парамет­ры: Вь представляет собой показатель среднего сходства между МЗ и ДЗ близнецами; В2 — оценку удвоенной разницы между средними в группах МЗ и ДЗ близнецов (с учетом ковариации между значениями МЗ и ДЗ пробандов); В3 оценивает долю дисперсии, объясняемую сре-довыми влияниями, общими для членов близнецовой пары (VС /VР или С ); В4, отражает разницу h g - h2 , где h2 — коэффициент наследу­емости в широком смысле и h g — коэффициент наследуемости в оп­ределенной группе (например, коэффициенты наследуемости IQ в группах здоровых людей и людей, страдающих ФКУ, отличаются друг от друга; В4 показывает разницу коэффициентов наследуемости, по­лученных в генеральной популяции и специфической выборке); и, наконец, В5 оценивает коэффициент наследуемости (h ), т. е. показа­тель того, насколько индивидуальные различия в исследуемой выбор­ке объясняются наследуемыми влияниями.

Интересной особенностью ДФ-метода является то, что он позво­ляет тестировать гипотезу о сходстве или различии этиологии нор­мально распределенных и экстремальных значений. Сравнение рег­рессионных коэффициентов В2 и В5 позволяет проверить гипотезу о том, сходны ли этиологии девиантных и «средних» значений, напри­мер, по тесту на математические способности. Если этиология неспо­собности к математике отличается от этиологии средних математи­ческих способностей, то В2 и В5 должны статистически надежно отли­чаться друг от друга. Если же дети, которые имеют трудности в овладении математикой, представляют собой не отдельную группу, а край нормального распределения, то В2 и В5 статистически отличать­ся друг от друга не должны,

Разные формулы для вычисления коэффициентов наследуемости характеризуются разного рода допущениями и ограничениями. В не­скольких исследованиях было продемонстрировано, что применение разных формул на одном и том же эмпирическом материале дает раз­ные результаты. Поэтому интерпретация данных, полученных одним методом близнецов, должна проводиться с учетом всех ограничений, свойственных этому методу. Ф. Фогель и А. Мотульски [159] отмечают, что даже при сильно упрощающих допущениях (например, отсутствия ассортативности, доминирования и т.д.) все равно остаются система­тические ошибки, которые невозможно полностью проконтролиро­вать. Они рекомендуют вычислять из одних и тех же эмпирических данных альтернативные оценки и сравнивать, насколько хорошо они совпадают.

Метод приемных детей. При допущении, что среда семей-усыно­вителей не коррелирует со средой тех биологических семей, из кото­рых данные дети усыновляются, корреляции детей с их биологичес-

кими родителями представляют собой «чистые» генетические корре­ляции (т.е. прямую оценку h2 или VG /VP, а с родителями-усыновите­лями — «чистые» средовые корреляции (с2 или VС /VP). Однако в том случае, если среды биологических и приемных семей похожи, допу­щение о «чистоте» полученных оценок генетической и средовой со­ставляющих чаще всего неправомерно (по крайней мере в тех случа­ях, когда корреляция сред неизвестна). Методологически адекватным, хотя практически и не всегда возможным решением в подобной ситу­ации служит получение нескольких оценок генетического и средово-го компонентов при разных значениях корреляции сред.

Таким образом, главной причиной беспокойства при использова­нии метода приемных детей является допущение об отсутствии кор­реляции между биологическими и приемными семьями. Кроме того, исследователи должны убедиться в том, что семьи-усыновители реп­резентативны общей популяции, т.е. не отличаются от среднепопуля-ционной семьи по уровню благосостояния, образования и т.п. Если семьи-усыновители нерепрезентативны, закономерности, полученные в результате их анализа, не могут считаться справедливыми для гене­ральной популяции.

АНАЛИЗ ПУТЕЙ

Приведенная выше логика разложения фенотипической диспер­сии на ее составляющие, реализованная в нескольких эмпирических методах, представляет собой один из способов определения коэффи­циента наследуемости того или иного признака. Но понятие наследу­емости можно также проанализировать при помощи «анализа путей».

Анализ путей в последние десятилетия широко используется и в психогенетике, и в науках о поведении вообще. Он был предложен генетиком С, Райтом еще в 30-х годах и затем им же и другими иссле­дователями детально разработан. Четкое изложение его основ и пра­вил использования содержится в упоминавшемся труде М. Нила и Л. Кардона [342], которые характеризуют этот метод следующим образом.

Диаграмма путей — эвристичный способ наглядного графическо­го представления причинных и корреляционных связей (путей) меж­ду переменными, позволяющий дать полное математическое описа­ние линейной модели, которую применяют исследователи. Тем са­мым диаграмма путей способствует ее пониманию, верификации или представлению результатов. В целом путевые модели — «экстремально обобщенный» способ анализа, один из многих мультивариативных методов (к ним же относятся методы множественной регрессии, фак­торный и дискриминантный анализы и т.д.).

Существуют определенные правила построения диаграмм пу­тей (рис. 8.4). Прямоугольники (или квадраты) обозначают наблюда-

Рис. 8.4. Диаграмма путей, объединяющая три латентных (А, В, С) и две наблюдаемых (D и Е) переменных.

риq — корреляции; r, s, w, х, у, z — путевые коэффициенты.

Рис. 8.5. Диаграмма путей для корреляций совместно живущих пар МЗ и ДЗ близнецов.

Th т2 — близнецы одной пары. G — генотип; С— общая среда; U — индивидуаль­ная (уникальная) среда; I— эпистаз. Пути h, с — влияния G, С на исследуемую черту.

емые переменные; круги (или эллипсы) — латентные, неизмеряе-мые переменные (на рис. 8.4. D и Е; А, В, С соответственно).

Связи между переменными обозначаются стрелками: постулиро­ванные исследователем причинно-следственные — направленной в одну сторону («путь» от причины к следствию); наблюдаемые ассо­циации — двусторонней. На рис. 8.4 первые — w, x, у, z, r, s (путевые коэффициенты); вторые — р и q (коэффициенты корреляции). Ина­че говоря, модель выделяет зависимые переменные (D и Е), подле­жащие объяснению или прогнозированию, и независимые (А, В, С), действие которых должно объяснить или предсказать зависимые пе­ременные и их связи. Есть и другие, более детальные, правила офор­мления и чтения путевых диаграмм, но мы их рассматривать не будем.

На рис. 8.5 даны модели путей для корреляций совместно живу­щих пар МЗ и ДЗ близнецов по экстраверсии, из которых следует, что

корреляция МЗ близнецов T1 и Т2 может быть выражена через сумму путей, связывающих их, т.е. hh и сс; иначе говоря, rМЗ = h2 +с2 . Для ДЗ это будут пути h х 1/2 х h и cc, т.е. rДЗ = 1/2 h2 + с2 . Вычитая, получим rМЗ — rДЗ = h2 + с2 — 1/2 h2 — с2 = 1/2 h ; чтобы получить полную генетичес­кую дисперсию (а не половину ее), удваиваем разность корреляций h2 = 2(rMЗ — rДЗ ) и получаем описанный выше коэффициент наследу­емости, справедливый для близнецовых исследований. Аналогичным образом могут быть построены путевые диаграммы для семейных и любых других данных.

Единицы измерения, используемые в анализе путей, отличаются от тех, которыми мы оперировали тогда, когда рассматривали по­нятие наследуемости на примере разложения фенотипической дис­персии. Если при разложении дисперсии мы пользовались квадратич­ными единицами (например, h2 , VG ), то в данном случае наследуе­мость описывается на языке стандартных отклонений. Тогда путевые коэффициенты являются коэффициентами регрессии, полученными для переменных не в исходных единицах, а для стандартизованных переменных.

Несмотря на широкое использование этого метода и его достоин­ства, которые заключаются прежде всего в наглядной демонстрации представлений о компонентах, влияющих на исследуемый признак, он имеет и своих критиков. Так, Ф. Фогель и А. Мотульски «не уверены в том, что этот метод биометрического анализа внесет существенный вклад в наше понимание генетических факторов» [159]. Одно из глав­ных сомнений вызывает тот факт, что в диаграмму путей и, следова­тельно, в дальнейший математический анализ закладываются уже имеющиеся у исследователя предположения о влияющих на признак факторах, их причинно-следственных отношениях и т.д., и результат анализа зависит, таким образом, от корректности заранее имеющих­ся исходных позиций.

АНАЛИЗ МНОЖЕСТВЕННЫХ ПЕРЕМЕННЫХ

До сих пор наши рассуждения концентрировались в основном на одном фенотипе, т.е. нашей конечной переменной являлся какой-то конкретно взятый фенотип. А если мы заинтересованы в одновремен­ном изучении двух фенотипов, которые теоретически могут быть свя­заны между собой? Например, связана ли вариативность в популяции по таким высоко коррелирующим признакам, как вербальный и не­вербальный интеллект? Насколько вероятно предположение о том, что вариативность по этим двум признакам может быть объяснена действием одних и тех же генетических и средовых влияний? Иными словами, если два признака коррелируют на фенотипическом уровне, то эта корреляция может быть результатом действия как генетичес-

Рис. 8.6. Диаграмма путей фенотипической корреляции двух призна­ков Рх и Ру , демонстрирующая роль генетической rG и средовой rE со­ставляющих.

ких, так и средовых факторов, и задача может заключаться в том, чтобы понять происхождение не только самих фенотипов, но и их корреляции.

Среди генетических причин, которые могут привести к появлению корре­ляции между признаками на фенотипическом уровне, следует указать на так называемый эффект плейотропии, или множественного влияния одних и тех же генов на разные признаки. Кроме того, различные популяционные про­цессы, например неслучайное скрещивание и смешивание популяций, также могут привести к возникновению корреляции между фенотипами.

Примером средового влияния на формирование фенотипической корре­ляции может служить дефицит питания: недоедающие дети обычно значи­тельно ниже своих сверстников как по весу, так и по росту, т.е. связь этих двух характеристик обеспечивается одним средовым фактором.

Значимость такого рода одновременного моделирования множе­ственных переменных трудно переоценить. Существуют целые классы поведенческих признаков, которые высоко коррелируют между собой (например, различные показатели когнитивной сферы, показатели эмоционально-волевой сферы и т.п.). Предположение о том, что ва­риативность по высоко коррелирующим психологическим признакам может объясняться действием одних и тех же генетических и/или сре­довых факторов кажется весьма правдоподобным.

Математическое описание множественных моделей достаточно просто, Рис. 8.6 представляет собой иллюстрацию того, как модель путей, рассмотренная нами, может быть разработана для одновре­менного анализа двух коррелирующих признаков. Подобно тому как фенотипическая вариативность отдельно взятого признака х ) отра­жает вариативность генотипов (hх ) и сред (ex), фенотипическая кор­реляция между X и Y (rРх Ру ) может быть результатом набора генети­ческих (hx rG) и средовых х еy RЕ) путей, где rG и rЕ представляют

собой генетическую и средовую корреляции, соответственно. В ре­зультате

rPxPf = hx hy r G + ех еy RЕ

ОЦЕНКА СОСТАВЛЯЮЩИХ ФЕНОТИПИЧЕСКОЙ ДИСПЕРСИИ МЕТОДОМ ПЕРЕБОРА (ПОДБОРА) МОДЕЛЕЙ(МПМ)

Некоторые корреляции родственников (например, корреляции МЗ близнецов, разлученных при рождении, или приемных сиблингов — усыновленных детей-неродственников, выросших в одном доме) сами по себе дают информацию, которой достаточно для получения отве­тов на центральные вопросы психогенетики о том, насколько вариа­тивность данного признака объясняется разнообразием сред и гено­типов, наблюдаемых в данной популяции. Подобное может быть сказано и о тех методах психогенетики, которые сопоставляют корреляции, полученные у двух типов родственников, например корреляции МЗ и ДЗ близнецов, приемных детей — с биологическими и приемными семьями.

Однако в современных исследованиях предпочтение при анализе психогенетических данных отдается не прямым оценкам составляю­щих фенотипической дисперсии, а применению метода перебора (подбора) моделей. Этот метод представляет собой специфическую адаптацию метода структурного моделирования к задачам генетики количественных признаков. МПМ отличается несколькими преиму­ществами: 1) более точной оценкой искомых параметров; 2) воз­можностью оценивать более сложные генетические модели, напри­мер учитывать половые различия и моделировать ГС-корреляции и в-заимодействия; 3) возможностью сводить в одном анализе данные, относящиеся к разным типам родственников, и получать, благодаря этому, относительно несмещенные оценки параметров и 4) возмож­ностью тестирования нескольких альтернативных моделей с целью выбора той, которая наилучшим образом соответствует исходным дан­ным.

В рамках генетики количественных признаков применение метода перебора моделей сводится к решению систем уравнений для обна­ружения такого набора параметров (т.е. подбора такой модели), ко­торый наилучшим образом соответствует набору исходных данных (корреляций родственников). Главное преимущество МПМ заклю­чается в том, что он позволяет тестировать все те допущения, которые не учитываются в традиционных методах генетики коли­чественных признаков. Например, обсуждая метод близнецов, мы указывали на то, что одним из допущений этого метода является допущение об отсутствии ассортативности. МПМ позволяет срав­нить две модели (учитывающую ассортативность и не учитываю-

Рис. 8.7. Диаграмма путей фенотипических корреляций по исследуемому признаку для двух типов МЗ близнецов: (а) выросших вместе и (6) разлу­ченных при рождении [по: 364].

Обозначения в тексте.

щую ее) и выбрать ту, которая наилучшим образом соответствует эмпирическим данным.

В качестве еще одного примера применения МПМ рассмотрим анализ родственных корреляций на основе модели, приведенной на рис. 8.7. Эта модель описывает фенотипическое сходство МЗ двух типов — выросших вместе (а) и разлученных при рождении (б). Каждая из моделей содержит: две измеряемых переменных — фе-нотипические значения близнецов, PMZ1 и РМZ2 ), и две латентных, неизмеряемых переменных — эффекты генотипа (G), и эффекты сре­ды (Е). Среды близнецов, выросших вместе, коррелируют rE MZ . Путь от латентной переменной — генотипа (G) к измеряемой перемен­ной — фенотипу (Р) обозначается h; путь от латентной переменной среды (Е) к измеряемой переменной фенотипа (Р) обозначается е. Задача моделирования заключается в том, чтобы решить систему уравнений и оценить два неизвестных параметра — е и h. Применяя правила анализа путей, запишем следующую систему уравнений:

(6)rMZ=hxh = h2.

Эта система содержит два уравнения и два неизвестных и решает­ся алгебраически.

Итак, мы проиллюстрировали простое приложение МПМ. На пер­вом этапе с помощью диаграмм путей записывается система уравне­ний, описывающих фенотипические корреляции для всех типов род­ственников, данные которых анализируются. Затем исследователь фор­мулирует набор альтернативных моделей, среди которых и ведется поиск модели с наилучшим соответствием эмпирическим данным.

Например, исследователь может протестировать соответствие полу­ченным данным следующих трех моделей, согласно которым феноти-пическое сходство родственников по определенному признаку объяс­няется: 1) только аддитивной генетической составляющей; 2) только доминантной генетической составляющей; 3) наличием и аддитив­ной, и доминантной генетических составляющих. Модель наилучшего соответствия выбирается на основе значения %-квадрата и других ста­тистических показателей, оценивающих степени соответствия модели исходным данным.

Как уже указывалось, перебираемые модели могут быть очень раз­ветвленными и сложными; они могут включать в себя множественные фенотипы, измеренные у нескольких типов родственников лонгитюд-ным методом (т.е. несколько раз за время исследования) и т.д.

Результаты применения МПМ могут быть использованы только при тестировании альтернативных моделей. Иными словами, МПМ не дает «доказательств» правильности тестируемой научной гипоте­зы; он позволяет лишь выбрать наиболее адекватную материалу гене­тическую модель. МПМ является элегантным и сложным статисти­ческим методом, применение которого требует наличия определен­ных навыков*.

СТРУКТУРНОЕ МОДЕЛИРОВАНИЕ

Структурное моделирование —сложный современный метод, требующий и больших объемов выборок, и специальной квалификации исследователя, и наличия соответствующих компьютерных программ. Детальное изложение его не входит в задачи данного учебника, мы даем краткую характеристику его возможностей, чтобы читатель, столкнувшись в литературе с этим типом ана­лиза, смог адекватно понять его смысл.

Статистические методы моделирования с помощью линейных структур­ных уравнений (МЛСУ)**, описывающих латентные переменные, были разра­ботаны на основе приемов статистического анализа множественных пере­менных, используемых биологами, экономистами, психологами и социолога­ми, МЛСУ предполагает формулирование набора гипотез о влиянии одних переменных (независимых) на другие (зависимые) переменные. Соответствие подобного набора гипотез, т.е. теоретической модели, и реальных данных, собранных при работе с конкретной выборкой, т.е. эмпирической модели, формализуется с помощью статистического алгоритма, оценивающего сте­пень их согласованности (меру соответствия).

* Полное описание спецификации МПМ в рамках количественной генети­ки выходит за пределы данного учебника. Подробное изложение этого метода да­ется в руководствах Лоэлина [320J, а также Нила и Кардона 1342]. На русском языке пример применения МПМ в рамках психогенетики приведен в работе Е.А. Григоренко иМ. ЛаБуды 144].

** История возникновения и этапы детальной разработки МЛСУ описаны Бентлером [189; 190], а в работах Боллена [198] и Бентлера и его коллег [191] содержится современное техническое описание МЛСУ.

МЛСУ особенно полезно при статистическом анализе большого количе­ства переменных, интеркорреляции которых известны. Задачами его являют­ся: суммирование этих переменных, определение отношений между ними, оцен­ка качества измерительных инструментов, контроль ошибки измерения (как для измеряемых, так и для латентных переменных) и нахождение соответ­ствия между измеряемыми и латентными структурами. Правомерно будет сказать, что в ситуациях, когда набор переменных неточно измеряет латент­ную структуру, являющуюся предметом исследования, т.е. практически в лю­бом случае, когда больше чем одна наблюдаемая переменная используется для представления латентной структуры, МЛСУ с латентными переменными следует применять как наиболее адекватный метод статистического анали­за. Учитывая, что в психологии большинство латентных структур измеряется именно посредством не одной, а нескольких переменных и не может быть представлено без ошибки измерения, возможность и необходимость приме­нения МЛСУ в этой области знаний становится очевидной.

Моделирование с помощью структурных уравнений представляет собой метод, родственный методу систем регрессионных уравнений, который ис­пользуется при формулировании, детализации и тестировании теории или гипотезы. Структурные уравнения соотносят зависимые переменные и на­бор детерминирующих (независимых) переменных, которые в свою очередь могут выступать в роли зависимых переменных в других уравнениях. Подоб­ные линейные уравнения в совокупности с уравнениями, детализирующими компоненты дисперсии и ковариации независимых переменных, составляют структурную модель. Составление и запись уравнений, детализирующих ком­поненты дисперсии и ковариации независимых переменных, осуществляют­ся с помощью матричной алгебры.

Статистической основой МЛСУ является асимптотическая теория, подра­зумевающая, что оценка и тестирование моделей осуществляются при нали­чии относительно больших по численности выборок испытуемых. Использо­вание МЛСУ требует больших затрат компьютерного времени, поэтому пользо­ватели при тестировании моделей предпочитают использовать стандартные статистические пакеты типа LISREL [295] и EQS [189]. Эти пакеты, несмотря на различия в деталях, основаны на одних и тех же общих математических и статистических подходах, применяемых к анализу систем линейных структур­ных уравнений. Основополагающая математическая модель [189] относится к классу ковариационных структурных моделей, включающих как множествен­ную регрессию, анализ путей, одновременный анализ уравнений, конфирма-торный факторный анализ, так и анализ структурных отношений между латен­тными переменными. Согласно модели Бентлера-Викса, параметры любой структурной модели могут быть представлены в виде регрессионных коэф­фициентов, дисперсий и ковариации независимых переменных. Статистичес­кая теория позволяет оценивать эти параметры с использованием мульти-факторной нормальной теории, а также более общих теорий — эллиптичес­кой и арбитрального распределения, основываясь на обобщенном методе наименьших квадратов или теории минимального х-квадрата.

* * *

В данной главе мы рассмотрели несколько краеугольных понятий генетики количественных признаков. Ее центральным допущением является представление о том, что фенотипическая вариативность признака может быть представлена в виде независимо действующих

14-1432

генетической (аддитивной, доминантной и эпистатической) и средо-вой (общей и индивидуальной) составляющих и составляющей, опи­сывающей взаимодействия между генами и средой (ГС-корреляции и ГС-взаимодействия). На этом строятся существующие в количествен­ной генетике математические методы. Используя принцип разложе­ния фенотипической дисперсии, можно определить так называемый коэффициент наследуемости, который говорит о том, какой процент фенотипической дисперсии объясняется вариативностью генотипа в популяции, Коэффициент наследуемости может быть определен не­сколькими способами, каждый из которых имеет свои достоинства и недостатки, поэтому использование того или иного способа должно определяться задачами работы, типом и объемом эмпирического ма­териала. Одновременно генетико-математические методы позволяют надежно выделить доли дисперсии, определяемые различиями в об­щесемейной и индивидуальной среде. Надо лишь иметь в виду, что содержательный анализ любого средового компонента требует при­влечения собственно психологических знаний и иногда специального подбора экспериментальных групп.

Помимо общесемейной и индивидуальной среды выделяется сре­да, специфичная для разных вариантов внутрисемейных диад, при­чем ее влияние на когнитивные способности различно в разных диа­дах. Общая тенденция такова: близнецовая среда > сиблинговая > ро-дительско-детская > двоюродных родственников; эти типы сред объясняют, соответственно, 35, 22, 20, 11% дисперсии [444]. При этом влияние общесемейной среды падает к подростковому возрасту и практически исчезает у взрослых.

Важно иметь в виду, что, как уже говорилось, речь идет о мате­матическом выражении той доли межиндивидуальной вариативнос­ти, за которую ответствен данный тип средовых воздействий. Конк­ретное же психологическое содержание каждого средового компо­нента — дело специальных, скорее же собственно психологических исследований. Однако значимость сравнительных оценок средовых компонентов (которые можно получить только в психогенетическом исследовании) трудно переоценить: именно они должны указать психологу, где надо искать релевантные исследуемой черте средовые переменные (например, в особенностях общей или индивидуальной среды). В этом — один из продуктивных аспектов взаимодействия двух наук.

Глава X

ПСИХОГЕНЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ ТЕМПЕРАМЕНТА

1. ЧТО ТАКОЕ ТЕМПЕРАМЕНТ?

К темпераменту традиционно относят формально-динамические характеристики поведения человека, «характеристики индивида со стороны динамических особенностей его психической деятельности, т.е. темпа, быстроты, ритма, интенсивности составляющих эту дея­тельность психических процессов и состояний» [118]. Черты темпера­мента определяют не столько то, что человек делает, сколько как он это делает, иначе говоря, они не характеризуют содержательную сто­рону психики (хотя, конечно, опосредованно влияют на нее).

Концепции темперамента весьма разнообразны. Начало его изу­чения обычно приписывают двум врачам — древнегреческому Гип­пократу (V-IV вв. до н.э.) и древнеримскому Галену (II в. до н.э.). Описанные ими четыре основных темперамента (холерики, сангви­ники, флегматики и меланхолики) существуют и в современных клас­сификациях. По-видимому, древним ученым удалось выделить и опи­сать очень существенные, удержавшиеся в течение веков типы чело-

веческого поведения. Однако они пытались не только описать вне­шние особенности поведения, но и найти их причину. В соответствии со взглядами того времени эти темпераменты связывались с разными сочетаниями основных «жидкостей» человеческого тела. Позднее нео­днократно предпринимались попытки связать темперамент человека с его анатомией или физиологией, в том числе с индивидуальными особенностями функционирования центральной нервной системы. Обзор современных концепций темперамента, представлений о его структуре и экспериментальных подходов к его изучению дан в книге М.С.Егоровой [58].

Для психогенетического исследования существенны несколько моментов. Во-первых, в разных возрастах компонентный состав тем­перамента оказывается разным, поскольку некоторые особенности поведения, характерные для маленьких детей (например, регулярность отправления физиологических функций, длительность сна и т.п.), либо отсутствуют, либо имеют совсем иной смысл в более старших возра­стах; во-вторых, методы диагностики динамических характеристик — вопросники, основанные на самооценке, экспертные оценки, проек­тивные методики, наблюдение, как правило, имеют значительно мень­шую, чем, например, тесты IQ, статистическую надежность и часто дают разные результаты; в-третьих, существует традиционная для пси­хологии проблема соотношения темперамента и характера; хотя пос­ледний, в отличие от темперамента, часто связывается с содержа­тельной стороной личности, это не позволяет надежно развести про­явления одного и другого: динамические характеристики деятельности могут в конкретных случаях определяться не только чертами темпера­мента, но и, например, высокой мотивированностью к данной дея­тельности, т.е. собственно личностной чертой.

Вспомним, например, исследование ткачих-многостаночниц [74], в кото­ром было показано, что высокая мотивация к труду, предъявляющему повы­шенные требования к темпу деятельности, способности быстро переключаться с одной операции на другую и т.д., компенсировала «природные» особенно­сти, которые должны были осложнить продуктивную работу. Речь шла о под­вижности нервных процессов (т.е. предположительно — об одном из факто­ров, определяющих темперамент); оказалось, что требуемый производством темп выполнения профессиональной деятельности выдерживали и «подвиж­ные», и «инертные», но достигалось это за счет разного стиля выполнения производственного процесса. Он-то и компенсировал «природную» дефици-тарность темповых характеристик.

Соотношение темперамента и характера, в конечном счете, сво­дится к проблеме «индивид и личность». Если фенотипические при­знаки, характеризующие динамическую сторону поведения, могут быть продуктом и темперамента, и личностных установок, то как разли­чать их? По-видимому, и здесь решающим может выступить «генети­ческий аргумент»: понимая личность как системное образование, от-

ражающее социо-культурный контекст, общественные отношения, в которые включен человек, мы, очевидно, не можем относить к этому уровню в структуре индивидуальности наследственно заданные свой­ства. Они принадлежат индивидному уровню, объединяющему сло­жившиеся в эволюции и в индивидуальном развитии биологические, — в частности, кодированные в геноме, — характеристики индивиду­альности. Поэтому правы А. Басе и Р. Пломин [222; см. также 132, гл. VIII; 58], включающие наследуемость в число критериев, обяза­тельных для отнесения той или иной психологической черты к темпе­раменту.

Однако надо иметь в виду, что в зарубежной психологии практи­чески нет традиции, разделяющей в структуре индивидуальности эти два уровня — индивид и личность. Поэтому в содержании вопросни­ков, в других диагностических процедурах и в получаемых затем фак­торах и схемах описания индивидуальности в целом часто объединя­ются черты и свойства, которые отечественный психолог отнес бы к разным подструктурам индивидуальности.

Даже в тех случаях, когда эти два термина — темперамент (temperament) и личность (personality) разводятся, речь идет скорее об объемах понятий, чем о разных подструктурах или уровнях интегральной индивидуальности. Дж. Лоэ-лин, например, ставя вопрос о соотношениях этих двух терминов, пишет: «В ос­новном мы будем использовать личность как более широкий термин, в то время как темперамент ограничивается такими аспектами личности, которые проще, раньше проявляются в онтогенезе, часто ассоциируются с эмоцио­нальной экспрессией» [318; с. 4]. В качестве иллюстрации он использует следующее рассуждение: пугливость может быть характеристикой темпера­мента ребенка в возрасте 1 года; она же может быть характеристикой пове­дения человека 21 года; в тех пределах, в которых мы считаем, что эти две характеристики есть одно и то же, с более или менее прямой передачей в ряду лет, она может рассматриваться как черта темперамента и у 21-летнего человека. Однако у него пугливость, вероятно, впитала в себя дополнитель­ные черты, отражающие предыдущий социальный опыт, удаляющий ее от пер­воисточника, от корней, что и заставляет обозначить ее более широким тер­мином «личностная черта».

Подобная постановка вопроса правомерна, но, может быть, вы­деление генотипической составляющей в этом сплаве — личностной черте — и позволит отделить свойство темперамента от приобретен­ного опыта?

Трудности, связанные с проблемой «темперамент—характер», за­ставляют некоторых исследователей считать, что черты темперамента в чистом виде могут быть диагностированы только у младенцев, когда социальный опыт минимален. Наиболее полно возрастной аспект пси­хогенетических исследований темперамента обобщен в упомянутой книге Дж. Лоэлина [318]. Дальнейшее изложение в основном — извле­чения из этой книги.

2. ИССЛЕДОВАНИЕ ГЕНОТИП-СРЕДОВЫХ СООТНОШЕНИЙ В ИЗМЕНЧИВОСТИ КОМПОНЕНТОВ ТЕМПЕРАМЕНТА У ДЕТЕЙ ПЕРВЫХ ЛЕТ ЖИЗНИ

В исследовании М. Риза [по: 318], проведенном на 45-47 парах МЗ близнецов, 38-39 однополых парах и 70-82 парах разнополых ДЗ пер­вых дней жизни (3,7 дня для доношенных и 46,9 дня для недоношен­ных или имевших медицинские проблемы, ликвидированные к мо­менту обследования), у тех и других получены одинаково низкие внут-рипарные корреляции по четырем чертам темперамента (возбудимость, способность успокаиваться и др.) и по характеристикам активности во сне и бодрствовании. Корреляции у МЗ близнецов колеблются в пределах 0,06-0,31, у однополых ДЗ они равны 0,06-0,59, у разнопо­лых — 0,13-0,30. Автор полагает, что главной причиной этого являют­ся пренатальные условия и особенности родов; аргументом в пользу такого объяснения служат корреляции между различиями по пове­денческим характеристикам, с одной стороны, и весом при рожде­нии и тесту Апгар, говорящему о физиологической зрелости ново­рожденного, — с другой. Как заключает Дж. Лоэлин, в этом возрасте гены не являются основным источником индивидуальных различий по темпераменту «или, точнее, еще не являются».

В ближайшие месяцы ситуация существенно меняется. В четырех исследованиях, проведенных с близнецами 10 возрастов — от 3 до 12 месяцев жизни (группы МЗ — от 29 до 117 пар, ДЗ — от 18 до 213 пар), использовавших разные методики оценки поведения детей — от лабораторных до наблюдения, только в одном случае сходство в парах ДЗ близнецов оказалось выше, чем МЗ; в остальных 9 возраст­ных группах корреляции МЗ выше, чем ДЗ. Коэффициент наследуемо­сти, правда, пока невелик — в среднем около 30%, но генетические влияния уже вполне отчетливы.

Это подтверждается и методом приемных детей: в Колорадском исследовании биологические сиблинги (101 пара в возрасте 1 года) имели корреляцию по шкале Н. Бейли, оценивающей особенности поведения ребенка, равную 0,20, а у 83 пар приемных сиблингов она была практически нулевой (0,09). На следующем, втором, году жизни генотипические влияния еще более отчетливы. В Луизвилльском близ­нецовом исследовании (близнецы 1,5 и 2 лет, 30-83 пары МЗ и 28-50 пар ДЗ) при оценке поведения ребенка двумя разными методами коэффициенты наследуемости уже достаточно высоки: h2 = 0,42-0,56, что сопоставимо с величиной генетической детерминации экстравер­сии и нейротицизма у взрослых.

По данным того же исследования, в течение первых двух лет МЗ близнецы оказываются более похожими и по возрастной динамике оценок, получаемых по шкалам темперамента и личности; усреднен­ные по нескольким шкалам и возрастным этапам (в пределах 9-48 ме-

16-1432 241

сяцев) корреляции таковы: rмз = 0,50; rдз = 0,18. Это может говорить о том, что индивидуальные траектории развития на данном отрезке онтогенеза также испытывают влияние наследственности.

Э.Ф. Кириакиди [77] у близнецов 21-25 месяцев жизни (x = 23мес.) оценивала, среди прочего, особенности поведения по методике Н. Бейли (одна из наиболее распространенных и хорошо отработанных шкал для диагности­ки детского развития). Эта часть шкалы объединяется в три фактора, два из которых могут быть отнесены к категории темперамента: эмоциональность — экстраверсия и активность. Результаты показали, что на абсолютные оценки по этим факторам влияют конкретные особенности домашней среды: нали­чие в семье бабушки, систематические игры родителей с детьми, хорошие жилищные условия. Однако внутрипарное сходство и, следовательно, коэф­фициент наследуемости от этих обстоятельств не зависит. Генетический ком­понент обнаружился только в дисперсии оценок эмоциональности (0,30 и 0,47 при двух разных способах вычисления). Индивидуальные различия по активности полностью определяются средой, причем в обоих случаях боль­шую роль играет индивидуальная среда. Но при этом эмоциональность и активность оказались связанными генетической корреляцией (rG = 0,45), что свидетельствует о наличии у них некоторой общей основы, общей системы генов, определяющих вариативность обеих черт.

Несколько иной подход к исследованию динамики поведения де­тей был реализован в Нью-Йоркском лонгитюдном исследовании, в котором были выделены 9 компонентов, описывающих динамику поведения ребенка: активность (главным образом двигательная), ре­гулярность (ритмичность появления поведенческих реакций, напри­мер, проявлений голода, отправления физических функций, смены циклов сна и бодрствования и т.д.); приближение-удаление (иначе обозначается как реакция к/от: направление эмоционального и дви­гательного ответа на новые стимулы); адаптивность (реакция на но­вую ситуацию); интенсивность реакции любого знака; порог активно­сти; доминирующее настроение; отвлекаемость (легкость изменения поведения в ответ на новые ситуации); внимание/настойчивость (дли­тельность какой-либо деятельности и способность продолжать ее воп­реки помехам). На основе Нью-Йоркского лонгитюдного исследова­ния А. Торгерсен провела близнецовое исследование, результаты ко­торого в табл. 10.1 [по: 132; гл. VIII].

Таким образом, уже начиная примерно с 9 месяцев жизни проявляется генетически заданная индивидуальность в сфере динамических характерис­тик поведения ребенка, т.е. темперамента.

Поданным, полученным в Нью-Йоркском лонгитюдном исследовании (оно началось в 1957 г.; первичная выборка— 133 ребенка раннего возраста), был выделен синдром трудного темперамента. Его признаками являются: низкая ритмичность, преобладание негативного настроения, слабая реакция «к», пло­хая адаптивность и высокая интенсивность реакций.

Оказалось, что этот синдром устойчив в первые годы жизни. В Нью-Йор­кском исследовании в парах возрастов получены положительные корреля-

Таблица 10.1

Внутрипарное сходство МЗ и ДЗ близнецов в исследовании темперамента А. Торгерсен

 

Показатели темперамента Возраст
2 месяца 9 месяцев 6 лет
Активность 1,52 5,26*** 11,34***
Регулярность 4,98** 12,86*** 4 22***
Приближение-удаление 0,83 6,77** 8,80***
Адаптивность 0,57 2,28* 2,23*
Интенсивность 2,55* 5,32*** 9 56***
Порог реактивности 2,82** 9 ,90*** 2 91***
Настроение 1,54 3 31** 3,32**
Отвлекаемость 1,40 3 94***
Внимание-настойчивость   4 40*** 5, 13***

Примечание. Внутрипарное сходство МЗ и ДЗ близнецов оценивалось по соотноше­нию дисперсий внутрипарных разностей. Значимое F-отношение говорит о боль­шем сходстве МЗ по сравнению с ДЗ и, следовательно, о наличии генетического компонента в изменчивости признака.

*р < 0,05; **р < 0,01; ***р < 0,001

ции: 1 год и 2 года — 0,42; 2 и 3 года — 0,37; 3 и 4 года — 0,29; в Колорад­ском проекте аналогичные корреляции даже выше: 0,54, 0,61, 0,54 соответ­ственно. Более того, начиная с трех лет обнаруживаются связи с темпера­ментом в период ранней взрослости (17-24 года): корреляции с оценками, полученными в 1 и 2 года, приближаются к нулю, но затем, в 3 и 4 года, они уже равны 0,31 и 0,37 (подумаем: ведь это интервал в 15-20 лет!).

Более того, трудный темперамент детства имеет проекцию в приспособ­ленность взрослого человека к разным сферам деятельности — обучения, социальной, семейной и т.д.; соответствующие корреляции с первым и вто­рым годами жизни нулевые, но с трудным темпераментом в 3 года трудно­сти взрослого уже имеют корреляцию r -0,21, а в 4 года r -0,32 (минус здесь означает, что, чем выше оценки трудного темперамента в детстве, т.е. чем он труднее, тем ниже приспособленность взрослого).

По данным упоминавшегося близнецового исследования А. Торгерсен, из пяти компонентов синдрома трудного темперамента в 6 лет три имеют высокую генетическую составляющую (слабая реакция «к», высокая интен­сивность реакций, низкая регулярность: h2 = 0,94; 0,82; 0,68 соответственно), один — плохая адаптивность — определяется в основном общесемейной сре­дой (с2 = 0,55), и еще один — негативное настроение — индивидуальной средой (е2 = 0,63). Правда, в двух последних признаках влияния наследствен­ности тоже констатируются: h2 = 0,26 и 0,37 соответственно (см. [132; гл. VIII]).

16*

3. ИССЛЕДОВАНИЯ ЧЕРТ ТЕМПЕРАМЕНТА У ВЗРОСЛЫХ

В подавляющем большинстве работ используются схема и методи­ки Г. Айзенка; оценивается экстра-интроверсия и нейротицизм или близкие к ним свойства: социабельность, активность и т.д. Меньше исследован психотицизм.

Напомним, что шкала экстраверсии объединяет такие характеристики, как социабельность, активность, оживленность, доминантность и т.п.; централь­ное ядро нейротицизма —эмоциональная стабильность-нестабильность, уро­вень эмоциональности в целом, но с ним коррелируют самооценка, осторож­ность и т.п. (однако это не клинический невротизм!); психотицизм, выделен­ный позже, характеризует агрессивность, холодность, эгоцентричность, отсутствие эмпатии и т.п. (но с ним коррелирует и креативность). На «низ­ких» концах трех указанных суперфакторов индивидуальности располагают­ся: интроверсия, эмоциональная стабильность, Я-контроль [246,250].

Эти черты оказываются весьма стабильными в онтогенезе и по своей структуре, и по индивидуальной выраженности. Например, нейротицизм и социальная экстраверсия, оцененные у одних и тех же людей с интервалом в 45 лет, коррелируют на уровне 0,30 и 0,60, В другом лонгитюдном исследова­нии, охватившем людей от среднего возраста до старости, с интервалом в 30 лет, межвозрастная корреляция социальной интроверсии равна 0,74; по ос­тальным шкалам (использовался MMPI) корреляции в среднем выше 0,40. Существуют и другие работы, выполненные разными диагностическими ме­тодами, на разных возрастных группах и интервалах, но говорящие о том же, а именно о возрастной стабильности этих характеристик индивидуальности [246].

Психогенетические исследования, суммированные Р. Пломиным с соавторами [364], показали отчетливое, хотя и не очень высокое влияние наследственности. В шведском исследовании (4987 пар МЗ близ­нецов и 7790 пар ДЗ 17-49 лет) получены такие оценки внутрипарно-го сходства: по экстраверсии rМЗ = 0,51 и rдз = 0,21, по нейротицизму оно такое же: 0,50 и 0,23 соответственно. Отсюда наследуемость в обо­их случаях равна 0,5-0,6. Важно, что примерно те же оценки получе­ны в независимом исследовании, проведенном в Австралии: внутри-парные корреляции МЗ и ДЗ близнецов (всего 2903 пары) по экcтpa­версии равны 0,52 и 0,17, по нейротицизму 0,50 и 0,23. Коэффициент наследуемости по экстраверсии выше, по нейротицизму примерно тот же, что свидетельствует о хорошей воспроизводимости результа­тов. В некоторых работах получено очень низкое сходство ДЗ близне­цов — более чем вдвое ниже сходства МЗ, что говорит, по-видимо­му, о неаддитивном типе наследования. У разлученных МЗ (95 пар) и разлученных ДЗ близнецов (220 пар) сходство по экстраверсии выра­жается коэффициентами 0,30 и 0,04 и по нейротицизму 0,24 и 0,28 соответственно.

Обобщенные оценки наследуемости, полученные объединением различных близнецовых работ, дают около 40% генетической вариа­тивности для экстраверсии и около 30% — для нейротицизма [364].

Более полно относящиеся к этим характеристикам данные про­анализированы в упомянутой книге Дж. Лоэлина [318]. Вот некоторые из них.

В табл. 10.2 и 10.3 приведены результаты четырех исследований разлученных близнецов: финского, шведского, британского, Мин-несотского (США). В трех первых большинство близнецов были раз­лучены на первом году жизни, но некоторые пары — лишь после 10 лет; в Миннесотской выборке разлучение произошло в возрасте менее 3 мес, и длилось не менее 5 лет. Во всех группах некоторые пары имели контакты уже после разлучения, некоторые вновь объе­динились перед самым тестированием. Однако в любом случае это — близнецы, которые значительную часть своего детства провели в раз­ных домах, т.е. в разной среде, и потому их сопоставление с вырос­шими совместно близнецами вполне информативно.

Таблица 10.2








Дата добавления: 2015-09-29; просмотров: 2121;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.146 сек.