Составление таблицы истинности
Таблица истинности логической формулы выражает соответствие между всевозможными наборами значений переменных и значениями формулы.
Для формулы, которая содержит две переменные, таких наборов значений переменных всего четыре: (0, 0), (0, 1), (1, 0), (1, 1).
Если формула содержит три переменные, то возможных наборов значений переменных восемь: (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1).
Количество наборов для формулы с четырьмя переменными равно шестнадцати и т.д.
Удобной формой записи при нахождении значений формулы является таблица, содержащая кроме значений переменных и значений формулы также и значения промежуточных формул.
Задача 1. Составить таблицу истинности для формулы , которая содержит две переменные x и y. В первых двух столбцах таблицы запишем четыре возможных пары значений этих переменных, в последующих столбцах — значения промежуточных формул и в последнем столбце — значение формулы. В результате получим таблицу:
Переменные | Промежуточные логические формулы | Формула | |||||
x | y | ||||||
Из таблицы видно, что при всех наборах значений переменных x и y формула принимает значение 1, т.е. является тождественно истинной.
Задача 2. Составить таблицу истинности для формулы :
Переменные | Промежуточные логические формулы | Формула | ||||
Из таблицы видно, что при всех наборах значений переменных x и y формула принимает значение 0, то есть является тождественно ложной.
Задача 3. Составить таблицу истинности для формулы :
Переменные | Промежуточные логические формулы | Формула | ||||||
x | y | z | ||||||
Из таблицы видно, что формула в некоторых случаях принимает значение 1, а в некоторых — 0, то есть является выполнимой.
Дата добавления: 2015-09-29; просмотров: 969;