Плоскорадиальный поток идеального газа при нарушении закона Дарси
Вблизи большинства газовых скважин происходит нарушение закона Дарси, поэтому расчеты, связанные с разработкой газовые месторождений, а также с исследованием скважин, проводят обычно по нелинейным законам фильтрации. При этом нельзя использовать для расчета дебита скважины формулу Дюпюи и нельзя использовать аналогию между фильтрацией жидкости и газа, так как они выведены с учетом движения по закону Дарси.
Пусть в газовом пласте толщиной h и проницаемостью k пробурена скважина радиусом rc. На скважине поддерживается давление pc, а на контуре питания радиусом Rk давление pk. В пласте происходит фильтрация газа по нелинейному (двухчленному) закону фильтрации. Необходимо рассчитать дебит скважины и распределение давления вокруг скважины. Математически эта задача описывается уравнением неразрывности потока
(3.27) |
Нелинейным законом фильтрации:
(3.28) |
Зависимостью плотностью газа от давления
(3.29) |
И граничными условиями:
(3.30) |
Эту систему уравнений будем решать методом исключения переменных. Из уравнения неразрывности найдем скорость фильтрации и подставим в нелинейный закон фильтрации. При этом исключается скорость фильтрации из уравнения фильтрации:
. | (3.31) |
Выразим массовый расход через объемный расход при атмосферном давлении, а плотность через давление
. | (3.32) |
Полеченное дифференциальное уравнение первого порядка будем интегрировать методом разделения переменных. Для этого умножим уравнение на 2 p dr:
. | (3.33) |
Для того, чтобы найти распределение давления вокруг скважины будем интегрировать это уравнение по давлению от давления на скважине pc до текущего давления p(r), а по радиусу от радиуса скважины rc до текущего радиуса:
(3.34) |
Для нахождения дебита скважины воспользуемся вторым граничным условием – заданным давлением pk на контуре питания. Пренебрегая 1/Rk во втором слагаемом (1/Rk<<1/rc) получим:
. | (3.35) |
Обычно вводят обозначения
. | (3.36) |
Тогда уравнение расчета дебита примет вид
. | (3.37) |
Коэффициенты “a” и “b” называются коэффициентами фильтрационных сопротивлений и определяются опытным путем по данным исследования скважины при установившихся режимах. Для нахождения дебита скважины по известным значениям “a”, “b” и разницы квадратов давлений необходимо решить квадратное уравнение:
. | (3.38) |
В этом уравнении выбираем знак + так, как дебит скважины не может быть отрицательным. При b ® 0 последнее уравнение приводит к неопределенности типа 0/0, поэтому преобразуем это уравнение к виду, в котором этой неопределенности нет:
. | (3.39) |
Дата добавления: 2015-09-25; просмотров: 1280;