Дифференциальные уравнения установившегося движения
Дифференциальное уравнение неразрывности потока выведено в параграфе 1.4. Если происходит установившееся фильтрация, то в этом уравнении производная по времени будет равна нулю. Если жидкость несжимаема, а пористая среда недеформируемая и однородна, то плотность, вязкость жидкости и проницаемость пласта постоянны и их можно вынести из-под знака дифференциала и уравнение неразрывности примет вид:
(2.1) |
Подставим в это уравнение скорости фильтрации, найденные из закона Дарси (п. 1.2), получим дифференциальное уравнение установившегося движения:
(2.2) |
Это уравнение называется уравнением Лапласа. Уравнение Лапласа – линейное дифференциальное уравнение так, как сумма решений уравнения Лапласа также является решением этого уравнения. На этом свойстве основан метод суперпозиции (наложения) решений, который будет использоваться в дальнейшем.
В случае притока к галерее, уравнение Лапласа запишется:
. | (2.3) |
а для скважины
. | (2.4) |
Для простых фильтрационных потоков установившегося движения несжимаемой жидкости уравнение неразрывности удобно записывать в интегральном виде:
. | (2.5) |
Одномерные фильтрационные потоки
Плоскопараллельный поток (приток к галереи)
Рис. 2.1 . Схема притока к галереи |
Пусть в горизонтальном пласте постоянной толщины h, ширины В, длины L и проницаемости k происходит фильтрация несжимаемой жидкости, которая имеет вязкость m. На левой граница пласта в сечении x = 0, совпадающем с контуром питания, поддерживается постоянное давление рk, а на правой границе в сечении x = L, поддерживается постоянное давление рг (здесь расположена добывающая галерея) (Рис. 2.1). Направим ось координат 0х вдоль направления движения жидкости, ось 0у — вдоль контура питания. Для полного исследования такого потока, как было выяснено ранее, достаточно изучить движение жидкости вдоль оси 0х. Математическая постановка задачи описывается следующими уравнениями.
Уравнение неразрывности потока, которое при фильтрации несжимаемой жидкости удобно записать в интегральной форме:
(2.6) |
Законом фильтрации - законом Дарси:
(2.7) |
А также граничными условиями
(2.8) |
Требуется найти распределение давления по пласту и дебит галереи.
Для решения полученной задачи подставим закон Дарси в уравнение неразрывности. Тогда получим дифференциальное уравнение первого порядка, которое легко интегрируется:
(2.9) |
Используя граничное условие на контуре питания
, | (2.10) |
найдем постоянную интегрирования с = pk. Тогда распределение давления по пласту запишется
(2.11) |
Откуда видно, что давление в пласте при плоскопараллельной фильтрации меняется по линейному закону. Используя второе граничное условие, найдем дебит галереи
(2.12) |
Формулой для распределения давления (2.11) удобно пользоваться, если известно давление на контуре и дебит галереи. Если известны давления на контуре и на галереи удобнее из формулы (2.11) исключить расход
(2.13) |
При известных значениях давления на галереи и дебите получим
(2.14) |
Если координата х будет отсчитываться не от контура питания, а от галереи, то в выше приведенных формулах необходимо заменить x => L - x.
Скорость фильтрации можно найти или по закону Дарси, или используя уравнение неразрывности потока
(2.15) |
Рис. 2.2 . Изменение давления и скорости по длине галереи при фильтрации нефти. |
Из последнего выражения видно, что скорость фильтрации одинакова во всех точках пласта и не зависит от координаты x. Изменение давления и скорости по длине галереи при фильтрации нефти показано на рисунке 2.2. Давление по длине галереи меняется по линейному закону.
Найдем время вытеснения нефти водой при постоянном расходе галереи от контура питания до расстояния x. Считая вытеснение поршневым, получим, что за время t скважина добудет объем нефти Q t. А из пласта будет отобран объем нефти, которая находилась в порах пласта m B h x. Так, как это объемы одинаковы, то:
(2.16) |
Полное время вытеснения нефти при поршневом вытеснении получим, если в последнюю формулу подставим x = L.
Плоскорадиальный поток (приток к скважине)
Рис. 2.3 . Схема притока к скважине |
Пусть в горизонтальном пласте постоянной толщины h и проницаемости k происходит фильтрация несжимаемой жидкости с вязкостью m к совершенной скважине радиусом rc, на которой поддерживается давление рс. На расстоянии Rk от скважины находится круговой контур питания, на котором поддерживается давление рk. (Рис. 2.3). Направим ось координат 0r от скважины. Для полного исследования такого потока, как было выяснено ранее, достаточно изучить движение жидкости вдоль оси 0r. Площадь поперечного сечения на радиусе r представляет боковую поверхность цилиндра и равна ω = 2 π r h . Математическая постановка задачи описывается следующими уравнениями.
Уравнение неразрывности потока, которое при фильтрации несжимаемой жидкости удобно записать в интегральной форме:
(2.17) |
Законом фильтрации - законом Дарси. Так, как фильтрация происходит против направления оси 0r, то скорости фильтрации, а соответственно и расходы будут отрицательными. Поэтому в законе Дарси опустим знак минус.
(2.18) |
А также граничными условиями
(2.19) |
Требуется найти распределение давления по пласту и дебит скважины.
Для решения полученной задачи подставим закон Дарси в уравнение неразрывности. Тогда получим дифференциальное уравнение первого порядка, которое легко интегрируется:
(2.20) |
Из граничного условия на контуре питания получим:
(2.21) |
Для исключения постоянной интегрирования ‘c’ вычтем из уравнения (2.16) уравнение (2.15). При этом воспользуемся свойством логарифмов ln(Rk) ‑ ln(r) = ln(Rk/r).
(2.22) |
Тогда распределение давления по пласту запишется
(2.23) |
Откуда видно, что давление в пласте при плоскопараллельной фильтрации меняется по логарифмическому закону. Используя второе граничное условие, найдем дебит скважины
. | (2.24) |
Формулой для распределения давления (2.23) удобно пользоваться, если известно давление на контуре и дебит скважины. Если известны давления на контуре и на скважине удобнее из формулы (2.24) исключить расход
. | (2.25) |
При известных значениях давления на скважине и дебите получим
(2.26) |
Скорость фильтрации можно найти или по закону Дарси, или используя уравнение неразрывности потока
(2.27) |
Из последнего выражения видно, что скорость фильтрации уменьшается обратно пропорционально расстоянию от скважины.
Рис. 2.4 . Распределение давления a) и отношение скорости фильтрации в пласте к скорости фильтрации на скважине б) для нефтяной скважины |
Найдем время вытеснения нефти водой при постоянном расходе галереи от контура питания до расстояния r. Считая вытеснение поршневым, получим, что за время t скважина добудет объем нефти Q t. А из пласта будет отобран объем нефти, которая находилась в порах пласта p (Rk2 - r2) h m. Так, как это объемы одинаковы, то:
(2.28) |
Полное время вытеснения нефти при поршневом вытеснении получим, если в последнюю формулу подставим r = rc.
Дата добавления: 2015-09-25; просмотров: 1923;