Примеры. Задача 1. Устройство состоит из 10 независимо работающих элементов

Задача 1. Устройство состоит из 10 независимо работающих элементов. Вероятность отказа каждого элемента за время Т равна 0,05. С помощью неравенства Чебышева оценить вероятность того, что абсолютная величина разности между числом отказавших элементов и средним числом (математическим ожиданием) отказов за время Т окажется: а) меньше двух; б) не меньше двух.

Решение: а) Обозначим через X дискретную случайную величину - число отказавших элементов за время Т. Тогда ; . Воспользуемся неравенством Чебышева:
. Подставив сюда , , , получим

б) События и противоположны, поэтому сумма их .

Ответ: а) ; б) .

Задача 2. Вероятность появления события в каждом испытании равна . Используя неравенство Чебышева, оценить вероятность того, что число появлений события заключено в пределах от 40 до 60, если будет произведено 100 независимых испытаний.

Решение: Найдем математическое ожидание и дисперсию дискретной случайной величины - числа появлений события в 100 независимых испытаниях: ; .

Найдем максимальную разность между заданным числом появлений и математическим ожиданием .

Воспользуемся неравенством Чебышева в форме . Подставляя , получим .

Ответ: .








Дата добавления: 2015-09-25; просмотров: 5961;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.