Теорема об изменении количества движения механической системы

Пусть на каждую точку механической системы действуют равнодействующая внешних сил и равнодействующая внутренних сил .

Рассмотрим основные уравнения динамики механической системы

(13.2)

Складывая почленно уравнения (13.2) для n точек системы, получим

(13.3)

Первая сумма в правой части равна главному вектору внешних сил системы. Вторая сумма равна нулю по свойству внутренних сил системы. Рассмотрим левую часть равенства (13.3):

.

Таким образом, получим:

, (13.4)

или в проекциях на оси координат

(13.5)

Равенства (13.4) и (13.5) выражают теорему об изменении количества движения механической системы:

Производная по времени от количества движения механической системы равна главному вектору всех внешних сил механической системы.

Эту теорему можно представить также в интегральной форме, проинтегрировав обе части равенства (13.4) по времени в пределах от t0 до t:

, (13.6)

где , а интеграл в правой части – импульс внешних сил за

время t-t0.

Равенство (13.6) представляет теорему в интегральной форме:

Приращение количества движения механической системы за конечное время равно импульсу внешних сил за это время.

Теорему называют также теоремой импульсов.

В проекциях на оси координат, теорема запишется в виде:

.

Следствия (законы сохранения количества движения)

1). Если главный вектор внешних сил за рассматриваемый промежуток времени равен нулю, то количество движения механической системы постоянно, т.е. если , .

2). Если проекция главного вектора внешних сил на какую-либо ось за рассматриваемый промежуток времени равна нулю, то проекция количества движения механической системы на эту ось постоянна,

т.е. если то .

 








Дата добавления: 2015-09-21; просмотров: 866;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.