Примеры решения задач. Пример 11.1. Определить степень окисления хрома в молекуле К2Cr2O7 и ионе (СrО2)−.

Пример 11.1. Определить степень окисления хрома в молекуле К2Cr2O7 и ионе (СrО2).

Под степенью окисления (с.о.) понимают заряд элемента в соединении, вычисленный, исходя из предположения, что соединение состоит из ионов.

Степень окисления элемента в простом веществе, например, в Zn, Сa, H2, Вг2, S, O2, равна нулю.

Определение степени окисления элемента в соединении проводят, используя следующие положения:

1. Cтепень окисления кислорода в соединениях обычно равна –2. Исключения составляют пероксиды H2+1O2–1, Na2+1O2–1 и фторид кислорода О+2F2.

2. Степень окисления водорода в большинстве соединений равна +1, за исключением солеобразных гидридов, например, Na+1H-1.

3. Постоянную степень окисления имеют металлы IА группы (щелочные металлы) (+1); IIА группы (бериллий, магний и щелочноземельные металлы) (+2); фтор (–1).

4. Алгебраическая сумма степеней окисления элементов в нейтральной молекуле равна нулю, в сложном ионе – заряду иона.

Решение. Чтобы рассчитать степень окисления элемента в молекуле, следует:

1) поставить степень окисления над теми элементами, для которых она известна, а искомую степень окисления обозначить через х. В нашем примере известна степень окисления калия (+1) и кислорода (-2) К2+1 Сr2хO7–2;

2) умножить индексы при элементах на их степени окисления и составить алгебраическое уравнение, приравняв правую часть к нулю.

К2+1 Сr2х O7–2 2(+1)+ 2x + 7 (–2) = 0 x = + 6

Степень окисления элемента в ионе определяют также, только правую часть уравнения приравнивают к заряду иона:

(СrхО2−2). x + 2 (–2) = –1 x = + 3

Пример 11.2.Исходя из степени окисления азота в соединениях NH3, KNO2, KNO3, определить, какое из них может быть только восстановителем, только окислителем и какое из них может проявлять и окислительные, и восстановительные свойства.

Решение. Возможные степени окисления азота: –3, –2, –1, 0, +1, +2, +3, +4, +5. В указанных соединениях с.о. азота равны: –3 (низшая), +3 (промежуточная), +5 (высшая). Следовательно, N-3H3 – только восстановитель, KN+3O2 – и окислитель и восстановитель, KN+5O3 – только окислитель.

Пример 11.3. Могут ли происходить окислительно-восстановительные реакции между веществами: а) HBr и H2S; б) MnO2 и HCl; в) MnO2 и NaBiO3?

Решение.а) В HBr с.о. (Br) = –1 (низшая); в H2S с.о. (S) = –2 (низшая). Так как бром и сера находятся в низшей степени окисления, то могут проявлять только восстановительные свойства, и реакция между ними невозможна; б) в MnO2 с.о. (Mn) = +4 (промежуточная); в HCl с.о. (Cl) = –1 (низшая). Следовательно, взаимодействие этих веществ возможно, причем MnO2 является окислителем; в) в MnO2 с.о. (Mn) = +4 (промежуточная); в NaBiO3 с.о. (Bi) = +5 (высшая). Взятые вещества могут взаимодействовать. MnO2 в этом случае будет восстановителем.

Пример 11.4.Составить уравнение окислительно-восстановительной реакции, идущей по схеме:

KMnO4 + KNO2 + H2SO4 ® MnSO4 + KNO3 + K2SO4 + H2O.

Определить окислитель и восстановитель. На основании электронных уравнений расставить коэффициенты.

Решение. Определяем степени окисления тех элементов, которые ее изменяют: KMn+7O4+ KN+3O2+H2SO4 ® Mn+2SO4+ KN+5O3 +K2SO4+H2O.

ок-ль восст-ль среда

Составляем электронные уравнения процессов окисления и восстановления, определяем окислитель и восстановитель:

N+3 – 2ē → N+5 5 окисление

Mn+7 + 5ē → Mn+2 2 восстановление

Уравниваем реакцию методом электронного баланса, суть которого заключается в том, что общее число электронов, отданных восстановителем, равно числу электронов, принятых окислителем. Находим общее наименьшее кратное для отданных и принятых электронов. В приведенной реакции оно равно 10. Разделив это число на 5, получаем коэффициент 2 для окислителя и продукта его восстановления, а при делении 10 на 2 получаем коэффициент 5 для восстановителя и продукта его окисления. Коэффициенты перед веществами, атомы которых не меняют свои степени окисления, находим подбором.

Уравнение реакции будет иметь вид:

2KMnO4 + 5KNO2 + 3H2SO4 = 2MnSO4 + 5KNO3 + K2SO4 + 3H2O.

Пример 11.5.Составить уравнения окислительно-восстановительных реакций, идущих по схемам: а) Mg + HNO3 (разб.) ® Mg(NO3)2 + NH4NO3 + H2O;

б) KClO3 ® KCl + O2; в) К2MnO4 + H2О ® КMnO4 + MnO2 + КOН.

В каждой реакции определить окислитель и восстановитель, расставить коэффициенты, указать тип каждой реакции.

Решение. Составляем уравнения реакций:

а) 4Mg0 + 10HN+5O3 = 4Mg+2(NO3)2 +N−3H4NO3 +3H2O

в-ль ок-ль, среда

Mg0 – 2ē → Mg+2 4 окисление

N+5 + 8ē → N–3 1 восстановление;

 

б) 2KCl+5O3–2 = 2KCl–1 + 3O20

ок-ль в-ль

2O–2 – 4ē → O20 3 окисление

Cl+5 + 6ē → Cl–1 2 восстановление;

в) 3K2Mn+6O4 + 2H2O = 2KMn+7O4 + Mn+4O2 + 4КОН

в-ль, ок-ль

Mn+6 –1ē →Mn+7 2 окисление

Mn+6 + 2ē → Mn+4 1 восстановление.

Как видно из представленных уравнений, в реакции (а) окислитель и восстановитель – разные элементы в молекулах двух разных веществ, значит, данная реакция относится к типу межмолекулярных окислительно-восстановительных реакций. В реакции (б) окислитель (хлор) и восстановитель (кислород) содержатся в одной молекуле, следовательно, реакция внутримолекулярная. В реакции (в) роль окислителя и восстановителя выполняет один и тот же элемент − марганец, значит, это реакция диспропорционирования.

Задачи

№ 11.1. а) Исходя из степени окисления серы в веществах S, H2S, Na2SO3, H2SO4, определить, какое из них является только окислителем, только восстановителем и какие могут быть и окислителем, и восстановителем. Ответ обосновать.

б) На основании электронных уравнений подобрать коэффициенты в уравнении реакции, идущей по схеме:

KI + KIO3+ H2SO4 ® I2+ K2SO4 + H2O.

Определить тип окислительно-восстановительной реакции.

№ 11.2. Реакции выражаются схемами:

Zn + HNO3 (разб) ® Zn(NO3)2 + N2O + H2O;

SnCl2 + K2Cr2O7 + H2SO4 ® Sn(SO4)2 + CrCl3 + K2SO4 + H2O.

Составить электронные уравнения, подобрать коэффициенты, указать, какое вещество в каждой реакции является окислителем, какое восстановителем.

№ 11.3. а) Составить электронные уравнения и указать, какой процесс (окисление или восстановление) происходит при следующих превращениях:

P–3 ® P+5; N+3 ® N–3; Cl® (ClO3); (SO4)2− ® S–2.

б) Реакция выражается схемой:

KMnO4 + H2S + H2SO4 ® MnSO4 + S + K2SO4 + H2O.

Определить окислитель и восстановитель, на сновании электронных уравнений расставить коэффициенты в уравнении реакции.

№ 11.4. а) Могут ли протекать окислительно-восстановительные реакции между веществами: а) Cl2 и H2S; б) KBr и KBrO; в) HI и NH3? Ответ обосновать.

б) На основании электронных уравнений подобрать коэффициенты, определить тип окислительно-восстановительной реакции, идущей по схеме:

NaCrO2 + PbO2 + NaOH ® Na2CrO4 + Na2PbO2 + H2O.

№ 11.5. а) Исходя из степени окисления железа, определить, какое из веществ может быть восстановителем, только окислителем и какое – и окислителем и восстановителем: FeSO4, Fe2O3, K2FeO4. Ответ обосновать.

б) На основании электронных уравнений подобрать коэффициенты для веществ в уравнении реакции, идущей по схеме:

CrCl3 + Br2 + NaOH ® Na2CrO4 + NaBr + NaCl + H2O.

№ 11.6. а) Составить электронные уравнения и указать, какой процесс (окисление или восстановление) происходит при следующих превращениях:

As+3 ® As+5; (CrO4)2– ® (CrO2); (MnO4) ® (MnO4)2–; Si+4 ® Si0.

б) На основании электронных уравнений расставить коэффициенты в реакции, идущей по схеме:

H2S + H2SO3 ® S + H2O.

№ 11.7.Реакции выражаются схемами:

MnSO4 + KClO3 + KOH ® K2MnO4 + KCl + K2SO4 + H2O;

NaNO3 ® NaNO2 + O2.

Составить электронные уравнения, расставить коэффициенты, определить окислитель и восстановитель в каждой реакции. К какому типу относится каждая из приведенных реакций?

№ 11.8. См. условие задания 11.7.

KBr + KBrO3 + H2SO4 ® Br2 + K2SO4 + H2O;

NH4NO3 ® N2O + H2O.

№ 11.9. См. условие задания 11.7.

H2S + K2Cr2O7 + H2SO4 ® S + Cr2(SO4)3 + K2SO4 + H2 O;

NaBrO ® NaBrO3 + NaBr.

№ 11.10. а) Исходя из степени окисления хлора определить, какое из соединений: Cl2, HCl, HClO4 является только окислителем, только восстановителем и какое из них может иметь функцию и окислителя, и восстановителя. Ответ обосновать.

б) На основании электронных уравнений расставить коэффициенты в уравнении реакции, идущей по схеме:

HNO3 + Bi ® NO + Bi(NO3)3 + H2O.

№ 11.11.См. условие задания 11.7.

H3AsO3 + KMnO4 + H2SO4® H3AsO4 + MnSO4 + K2SO4 + H2O;

AgNO3 ® Ag + NO2 + O2.

№ 11.12.а) Mогут ли происходить окислительно-восстановительные реакции между веществами: а) H2S и Br2; б) HI и HIO3; в) KMnO4 и K2Cr2O7? Ответ обосновать.

б) На основании электронных уравнений расставить коэффициенты в уравнении реакции, идущей по схеме:

H2O2 + KMnO4 + H2SO4 ® O2 + MnSO4 + K2SO4 + H2O.

№ 11.13. а) Составить электронные уравнения и указать, какой процесс (окисление или восстановление) происходит при следующих превращениях:

(BrO4) ® Br2; Bi ® (BiO3); (VO3)®V; Si–4 ® Si+4.








Дата добавления: 2015-09-11; просмотров: 1462;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.021 сек.