Условия эффективного применения геофизических методов
Условиями для этого являются: 1) заметная дифференциация физических свойств искомых геологических объектов и вмещающей среды, 2) благоприятные геометрические размеры вызывающих аномалии объектов, 3) относительно низкий уровень помех геологического и негеологического происхождения.
Понятия о дифференциации (контрастности) физических свойствизменяются в зависимости от метода и решаемых геологических задач. Например, для гравиразведки контрастность свойств оценивают значением избыточной плотности (δп), а для электроразведки — соотношением удельных электрических сопротивлений (УЭС) объекта поисков (ρ0) и вмещающей среды (ρср). Для поисков рудных тел гравиразведкой необходима δп около 0,3-0,4 г/см3, а для решения структурных задач достаточно 0,1 г/см3, что связано с размерами разведываемых объектов. Для структурной электроразведки методом ВЭЗ ρп должны различаться как минимум в 1,2—1,5раза. Для поисков рудных тел методом индуктивного профилирования р0 должно быть меньше ρ хотя бы в 10 раз. Кроме контрастности средних значений свойств важное значение имеет дисперсия Р.Ее принято определять по гистограммам,т. е. графикам зависимостей процента замеров (Р, %)с заданным значением (х) какого-нибудь физического свойства. При одинаковой разнице средних значений физических свойств, представленных для двух типов пород, те породы у которых меньшая дисперсия выделяются более надежно (рис.4.18).
Рис. 4.18. Вариационные кривые физических свойств пород двух типов (1,2) при разной дисперсии (а, б)
Удобной количественной мерой различия каких-нибудь признаков является надежность разделения γ=1 - q где q — отношение площади перекрытия вариационных кривых (Soбщ)к сумме полных площадей под вариационными кривыми (S1 + S2). Надежными для различия свойств считают значения γ от 75 до 100 %.
Величины аномалий от объектов определяются геометрическими соотношениями размеров объекта и глубины его залегания.Например, в электроразведке методом ВЭЗ надежное определение слоя возможно, если отношение его мощности (h) к глубине залегания (H) удовлетворяет условию h/H> 2-10. Слой практически не выделяется, если h/H < 0,1. Предельная глубина залегания изометричных тел, определяемая разными методами геофизики, зависит от отношения радиуса тела (R)к глубине (Н). Например, величины аномалий над сферой пропорциональны: для гравитационных — R3/H2, для магнитных — R3/H3, для естественного электрического поля — R2/H2, поэтому скорость убывания поля с удалением от источника, а следовательно, и глубина исследования этими методами будут различными. Различают «сильные» аномалии, выделенные визуально, и «слабые» аномалии, соизмеримые с уровнем помех и ниже этого уровня/
Еще одним важным условием применимости геофизических методов является уровень помех.Различают помехи геологического и негеологического происхождения.К первымотносят влияние перекрывающих и подстилающих пород, рельефа местности, неоднородности свойств вмещающих пород и т. д. Для электроразведки наибольшее значение имеют рыхлые проводящие отложения в верхней части разреза и слои высокого электрического сопротивления (каменная соль, ангидрит, межпластовые интрузии) на глубине, так называемые экраны.Экраны высокого сопротивления являются препятствием для методов электроразведки постоянным током, но проницаемы для методов переменного тока. Подстилающие породы оказывают заметное влияние на данные грави- и магниторазведки. Рельеф влияет на результаты электроразведки и очень сильно усложняет анализ данных гравиразведки. Толщи многолетнемерзлых пород, распространенные во многих районах нашей страны, создают трудности при проведении электро- и сейсморазведки (устройство заземлений, возбуждение упругих полей).
К помехам негеологического происхожденияотносят временные вариации геофизических полей. В гравиразведке такие вариации вызываются относительными перемещениями Солнца и Луны и считаются предсказуемыми; в магниторазведке — солнечной активностью и ее воздействием на ионосферу Земли, здесь они непредсказуемы и требуют учета. Искусственные электромагнитные поля искажаются вариациями магнитотеллурических полей, связанных с солнечной активностью, и блуждающих токов техногенного происхождения, а также вариациями полей грозовых разрядов. Для большинства методов электроразведки это — поля-помехи, которые надо подавить или учесть. Однако в некоторых методах электроразведки используют физические поля помех с целью получения полезной геологической информации. Приведенные факты подчеркивают относительность понятия помехи.
В геофизике все более заметными становятсяпомехи, порождаемые деятельностью человека.Сейсмическая вибрация, блуждающие электрические токи, железные предметы в земле и на ее поверхности, подземные горные выработки, техногенные температурные аномалии нередко оказывают заметное влияние на качество геофизических измерений, а в некоторых случаях делают такие работы невозможными. Борьбу с помехами ведут либо методическими приемами, либо аппаратными средствами.
К помехам также относят ипогрешности измерений. Ихделят на три категории; систематические, случайные и грубые (промахи). Систематические погрешности обусловлены недостатками конструкции прибора или несовершенной методикой измерений и могут быть выявлены путем периодических поверок и устранены введением поправок (например, поправкой за сползание нуль-пункта прибора в грави- и магниторазведке). На случайные погрешности влияет множество причин, учесть и устранить которые не представляется возможным. Но влияние случайных погрешностей можно уменьшить статистическими приемами обработки.
Неоднозначность решения обратных задач геофизики или неопределенность решения имеет две стороны:одна из них касается качественного определения геологической природы выявленных геофизических аномалий, вторая — получения количественных геометрических характеристик объектов исследований: формы, размеров, глубины и других элементов залегания. К примеру, аномалии гравитационных, магнитных, электрических и других полей, обусловленные объектами исследования, очень часто не отличаются по форме, интенсивности и размерам от аномалий, создаваемых геологическими неоднородностями верхней части разреза, рельефом местности и другими факторами. Аномалии от вертикально залегающих рудных тел часто сходны с аномалиями от тектонических нарушений, по которым внедрялись гидротермальные растворы.
Рассмотрим пример однозначного решения задачи распознавания пород разных типов при картировании. Пусть свойства пород шести основных типов (А, Б, В, Г, Д, Е), слагающих район исследований, представлены в виде распределений физических свойств (рис. 126). Если значение магнитной восприимчивости опознаваемого комплекса χ', то этот комплекс можно отнести к одному из трех типов пород А, В, Е. Наличие третьей характеристики — кажущегося сопротивления (ρк΄) — позволяет однозначно определить его принадлежность к классу В. Анализ рис. 4.19 показывает, что любая из пород шести типов по данным трех методов (магнито-, грави- и электроразведки) опознается однозначно.
Рис. 4.19. Определение природы геофизических аномалий
Неоднозначность количественного решения обратной задачи проявляется в теоретической и практической эквивалентности. Теоретическая эквивалентность состоит в том, что различные по размерам и глубинам залегания геологические объекты могут создавать одинаковые по форме, размерам и интенсивности аномалии. Практическая эквивалентность определяется совпадением аномальных эффектов от различных по размерам объектов в пределах погрешностей наблюдений и используемого метода интерпретации.
Качественная и количественная неоднозначности при решении обратной задачи геофизики проявляются обычно одновременно.И в общем случае достижение однозначности как для определения природы геофизических аномалий, так и для количественного описания возмущающих объектов возможно лишь путем комплексирования разных методов.
Природу аномалий (точнее, классификацию ихнарудные и безрудные) можно иногда определять и с помощью какого-нибудь одного метода, применяя несколько его модификаций. Это будет внутриметодноекомплексирование. Широко известен, например, способ разделения аномалий, выделенных электропрофилированием, на приповерхностные, связанные с неод-нородностями в рыхлых отложениях, и глубинные, обусловленные коренными породами. Способ заключается в проведении работ на двух разносах питающих заземлений АВ — меньшем и большем. Если при большем разносе аномалия рк проявляется резче, чем при меньшем, значит, она глубинного происхождения, и наоборот. Лучше для этих целей использовать графики отношения величин рк, полученных для двух разносов. Этим же способом в электропрофилировании можно разрешить неопределенность типа «синклиналь — антиклиналь». Например, понижение р^ может наблюдаться как при поднятии нижнего слоя низкого сопротивления, так и в случае погружения пласта высокого сопротивления. (рис. 4.29).
В электроразведке переменным током разная глубинность достигается наблюдениями на разных частотах: чем выше частота, тем меньше глубинность исследований {скин-эффект). Разночастотные наблюдения могут оказаться полезными и для отделения сплошных сульфидных руд от вкрапленных. При определении природы возмущающего объекта электроразведка переменным током на высоких частотах обладает преимуществом перед методом сопротивлений на постоянном или низкочастотном токе, поскольку в высокочастотных полях породы различаются не только по электропроводности, но и по диэлектрической проницаемости, поэтому разрешающая способность электроразведки возрастает. Породы с одинаковой электропроводностью могут различаться по диэлектрической или по магнитной проницаемости.
Рис. 4.20. Графики электропрофилирования методом СЭП с двойными разносами над геологическими разрезами различных типов
1 увлажненные наносы, 2 – граниты, 3 – зона трещиноватости, 4 – глыбовые песчаники, 5 – глины
В методе естественного поля ложные аномалии фильтрационного происхождения выделяются по признаку их изменчивости во времени. Разновременные съемки дают в этих случаях графики потенциала, сходные по характеру, но различающиеся по абсолютным значениям. Последнее объясняется тем, что интенсивность фильтрации подземных вод зависит от времени года, в частности, от количества выпадающих осадков. Другим отличием этих графиков является их обратная связь с рельефом: график потенциала U представляет собой как бы зеркальное отображение рельефа земной поверхности вдоль профиля наблюдений.
Цель комплексной интерпретации геофизических данных —достижение однозначности геологического истолкования геофизических наблюдений.При этом различают комплексный анализ и комплексную интерпретацию полей. Под комплексным анализом понимается отработка комплекса различных признаков для решения задач геокартирования ирайонирования исследуемой площади (или разреза) на несколько классов, а также перспективных на полезные ископаемые участков. Комплексная интерпретация состоит в построении согласованной по всем полям комплексной физико-геологической модели, т. е. модели с оценками петрофизических свойств, формы и геометрии изучаемых объектов или геосреды. Комплексный анализ, как правило, обеспечивает качественную интерпретацию по оценке природы источников, а комплексная интерпретация — количественную оценку физических и геометрических параметров этих источников. Грани между анализом и интерпретацией часто стираются. Для данных отдельно взятого метода часто используется термин «физико-геологическая интерпретация», включающая установление природы источников аномалий, их количественную оценку и геологическое истолкование.
При комплексном анализе геофизических данных требуется провести разделение площади исследований по комплексу методов, основанных на расчете различных признаков (атрибутов, параметров) полей и отличающихся по геологической природе объектов исследований — классов.В том случае, когда имеется априорная информация о числе классов и о статистических характеристиках признаков для этих классов, т. е. в случае наличия эталонных объектов каждого класса, задача комплексного анализа сводится к распознаванию образов с предварительным обучением на эталонных объектах. Если же число классов неизвестно и нет информации о статистических характеристиках, задача комплексного анализа сводится к задаче классификации (распознавания образов без обучения или с самообучением) на некоторое, заранее неизвестное число однородных (по совокупности признаков) классов. При этом как число классов, так и статистические характеристики признаков оцениваются в процессе обработки исходных данных.
В качествепризнаковдлягеофизических полейиспользуются: статистические(среднее значение, дисперсия, асимметрия, эксцесс); градиентные(горизонтальные градиенты поля, полный градиент, направление полного градиента); корреляционные(интервал корреляции) и спектральные(видимый пространственный период или видимая частота, ширина спектра) измеряемых параметров полей. На эталонных объектах проводится оценка информативности признаков,т. е. способности признака (метода) различать сравниваемые объекты. Такая способность зависит от того, как часто определенные значения признаков поля встречаются у объектов прогнозируемого класса икак широко они распространены за их пределами.
Привыборе комплекса геофизических методовв зависимости от имеющейся априорной информации возможны различные варианты. Первый из них связан с привлечением всех методов, которые в принципе способствуют решению поставленной геологической задачи (типовой комплекс методов). Выбор рационального комплекса проводится тогда, когда имеются данные об информативности отдельных методов и их различных сочетаний при решении конкретной задачи, а также экономические показатели методов.
Выбор геофизического комплекса достаточно индивидуален, поскольку зависит от поставленной конкретной задачи с учетом факторов как геологического, так и экономического характера. Однако большой опыт проведения геофизических исследований при решении различных задач в различных геологических условиях позволяет определить те положения (принципы), которые лежат в основе выбора любого геофизического комплекса. К таким принципам относятся:
• включение в состав комплекса методов, которые обеспечивают получениеразнородной информации, т. е. информации о разных элементах и параметрах ФГМ изучаемых объектов, геосреды или процессов;
• соблюдение определенной последовательности (системности или стадийности) геофизических исследований, характеризующейся возрастающей детальностью изучения объекта, среды, процесса;
• разделение методов на основные и детализационные. С помощью основного (или основных) метода исследуют всю площадь по равномерной сети наблюдений. Остальные методы играют роль дополнительных, уточняющих и проводятся с большей детальностью на определенных профилях или на ограниченных по размерам участках, перспективность которых определена по данным основных методов;
• учет геоморфологии и других факторов, отражаемых в схемах районирования территории по условиям применения геофизических методов. Например, в условиях горного рельефа ограничены возможности сейсморазведки и гравиразведки, а при мощном чехле осадочных образований — магниторазведки;
• многократное чередование геологических, геофизических, геохимических и горнобуровых средств геологической разведки.
После проведения геофизических исследований выявленные аномальные участки детально изучают геологическими и геохимическими методами. В скважинах и выработках наряду с каротажем проводят наблюдения методами подземной геофизики. На основе полученных данных результаты полевых геофизических съемок интерпретируют заново, выполняют дополнительные геофизические работы по сгущенной сети и с привлечением ранее не применявшихся методов. Перспективные участки затем изучают более детально путем бурения новых скважин и проходки горных выработок.
При выборе комплекса методов для планомерного изучения больших территорий первоочередное внимание следует уделять аэрогеофизическим методам как наиболее производительным и экономичным, стремясь к использованию максимального числа измерительных каналов при съемке с борта одного самолета или вертолета. Аэрогеофизические исследования должны сопровождаться наземными детализационными работами с целью выявления аномалий на местности и выяснения их природы и перспективности. В наземный комплекс включаются аналоги аэрометодов или близкие к ним по изучаемым параметрам методы.
Формирование геофизического комплексапоследовательно реализуется с учетом:
• построения априорной (предварительной) физико-геологической модели на основе поставленной геологической задачи и имеющейся информации об объекте исследования. Источниками геологической априорной информации являются: тектоника района, геоморфологические условия района (степень закрытости местности, развитие рыхлого покрова и кор выветривания), рельеф местности, состав вмещающей среды, проявления метаморфизма и др. Источниками геофизической информации служат: физические свойства пород и руд; измеренные физические поля, результаты физического и математического моделирования;
• изучения условий применимости геофизических методов для решения поставленной задачи. К таким условиям относятся: а) заметная дифференциация физических свойств пород'и руд; б) благоприятные геометрические параметры объекта исследований (форма, размеры, глубина и элементы залегания); в) достаточно низкий уровень помех;
• выяснения неоднозначности решения задачи отдельными геофизическими методами как по определению геологической природы выявляемых аномалий, так и по оценке количественных параметров объектов: формы, размеров, глубины и элементов залегания;
• расчета сети наблюдений и необходимой точности измерений. При этом используются параметры ФГМ, масштаб исследований, результаты решения прямых задач, экономические показатели съемки;
• комплексного анализа и комплексной интерпретации геофизических данных на базе различных методов и компьютерных технологий распознавания образов и классификации изучаемой территории на однородные области;
• оценки геологической информативности геофизических методов и их сочетаний на базе различных количественных приемов. Такая оценка позволяет осуществить выбор геологически эффективного комплекса, но при этом не учитываются экономические показатели;
• оценки экономической эффективности методов и их комплекса путем сравнения затрат при одинаковой геологической информативности двух и более методов.
Приформировании геофизического комплексавыделяют следующие его виды:
1. Типовой комплекс, создаваемый для достаточно обобщенных и в то же время наиболее типичных геологических и геоморфологических условий проведения работ. Типовой комплекс может содержать избыточное число геофизических методов, поскольку в него включают все методы, в той или иной мере способствующие решению поставленной задачи. Например, при крупномасштабном геологическом картированиимасштабов 1 : 50 000 и 1 : 25 000 основными задачами являются: геологическое изучение среды для обоснования поисков, выделение рудоносных структур и формаций, уточнение поисковых критериев с выделением рудоперспективных площадей. При этом типовой комплекс включает: аэрогеофизические съемки (магнитные, электромагнитные, гамма-спектрометрические); наземные электроразведочные работы (вертикальное электрическое зондирование и симметричное электропрофилирование; методы естественного поля, вызванной поляризации и переходных процессов — как детализационные); гравиразведка масштаба 1 : 50 000; сейсморазведка по отдельным профилям на открытых районах и площадная — на закрытых.
В качестве другого примера укажем на прогноз нефтегазоносности в осадочных басейнах,при котором решаются задачи: картирования литолого-стратиграфического комплекса и структурно-фациальных зон; выделения нефтегазолерспективных резервуаров, качественная и количественная оценка перспектив нефтегазоносности; выбор объектов для дальнейших исследований. При этом типовой комплекс включает: гравиметрическую и аэромагнитную съемки масштаба 1 : 200 000-1 : 100 000; электроразведку ЗСБ по системе опорных пересечений; сейсморазведку методами отраженных и преломленных волн, глубинное сейсмическое профилирование по системе опорных пересечений, а также параметрическое бурение на опорных профилях в различных структурно-фациальных условиях с проведением геофизических исследований скважин.
2. Рациональный комплекс, представляющий геологически и экономически обоснованное сочетание геофизических методов и сопровождающих их геологических и геохимических видов исследований с целью эффективного решения поставленной задачи. Особенностью рационального комплекса является его привязка к определенным, а не к типовым геологическим, геоморфологическим и геолого-экономическим условиям конкретного объекта. При этом необходима хотя бы приблизительная оценка информативности и экономических затрат для включаемых в комплекс геофизических методов. Рациональный комплекс создается на основе типового комплекса при наличии достаточного объема априорной информации, позволяющей оценить информативность отдельных методов и их различных сочетаний.
3.Внутриметодное комплексироваяие, при котором для решения задачи используются различные модификации одного геофизического метода, например, электропрофилирование и электромагнитное зондирование, комплекс методов отраженных и преломленных волн в сейсморазведке и т. д.
4.Внешнее комплексирование, представляющее собой сочетание геофизических методов с геохимическими и горно-геологическими исследованиями.
5. Технологический комплекс — сочетание геофизических методов, связанных единой технологией проведения работ по месту и по уровню наблюдений. В качестве технологических комплексов выступают: спутниковая геофизика, включающая измерения магнитного поля Земли, альтиметрию над океанами по измерениям обусловленного гравитирующими массами отклонения спутников от сферической орбиты, инфракрасную тепловую съемку в различных диапазонах спектра; аэрогеофизика с измерениями магнитного, гравитационного полей, сверхдлинноволновым радиопрофилированием, гамма-спектрометрическими измерениями (U, Th, К и общего канала), а также высотомером; геофизические исследования скважин (каротаж) с измерениями электрических полей с потенциал- и градиент-зондами, измерениями магнитной восприимчивости, волнового поля (акустический каротаж) и различных полей естественной и искусственной радиоактивности; морская геофизика, также представляющая собой технологический комплекс, поскольку на судне обычно одновременно проводятся измерения нескольких физических полей: магнитного, гравитационного, волнового; подземная (или шахтно -рудничная) геофизика — измерения физических полей в горных выработках и скважинах.
Следует отметить возможность изменения геофизических комплексов в пространстве, что отражает факт изменения физических полей на площадях с неодинаковым геологическим строением, хотя при этом может решаться одна и та же задача на одной и той же стадии работ.
Проектное задание разделу: Комплексирование геофизических методов
·
1. Составить схему классификации геофизических методов по решаемым геологическим задачам.
2. Охарактеризовать основные принципы комплексирования геологических, геофизических, геохимических и геоэкологических методов для решения геологических задач.
3. Дать определения типовых и рациональных комплексов.
4. Составить основные требования к составлению физико-геологических моделей.
5. Обосновать необходимость комплексирования наземных и дистанционных (аэрогеофизических и аэрокосмических) методов для решения геологических (поиски и разведка месторождений нефти, газа, руд, угля строительных материалов и др.) и геоэкологических (аварийные разливы нефти, утечки из магистральных продуктопроводов, подтопление территорий, мониторинг загрязнения промышленных и гражданских объектов и др.) задач.
6. Назвать основные принципы выбора геофизического комплекса и виды комплексирования геолого-геофизических методов.
7. Обосновать эффективность применения геофизических методов в гидрогеологии, инженерной геологии, мерзлотоведении, гляциологии, мелиорации, при экологических и техногенных исследованиях.
Тесты рубежного контроля по разделу: Комплексирование геофизических методов
1. Вопрос: Зачем необходимо геофизическое комплексирование?
Ответ: Чтобы получить возможно максимальную информацию об объекте исследований. Из-за неединственности и некорректности решения обратных задач геофизики. Для решения геологических задач при поисках, разведке и эксплуатации месторождений полезных ископаемых. Чтобы заменить более дорогостоящее бурение геологоразведочных скважин.
2 Вопрос: В чем суть физико-геологического моделирования?
Ответ: В решении прямых задач геофизики для проведения интерпретации аномалий в рамках решения обратных геофизических задач. В правильном определении размеров, формы и физических характеристик геологических объектов. В проведении измерений или математических расчетов над макетами геологических образований с целью получения аномальных эффектов.
3. Вопрос: Чем вызвана необходимость комплексирования наземных и дистанционных (аэрогеофизических и аэрокосмических) методов при решении геологических задач?
Ответ: Удешевлением геологоразведочных работ за счет сокращения объемов бурения. Ландшафтными и климатическими условиями и возможностью сокращения сроков работ. Анализом типовых и выбором рациональных комплексов геофизических исследований.
4..Вопрос: Каковы причины неоднозначности решения обратных задач геофизики?
Ответ: В неправильно выбранном комплексе геофизических методов. В теоретической (разные геологические объекты создают одинаковые аномалии) и практической (совпадение аномалий от различных объектов) эквивалентности. В отсутствии соответствующих программ обработки геофизической информации.
5. Вопрос: Как осуществляется выбор геофизических комплексов?
Ответ: На основе принципов оценки наибольшей информативности и экономической целесообразности применения геофизических методов. По критериям подобия с ранее проведенными работами. Путем выяснения степени неоднозначности в решении геологической задачи известных геофизических технологий. На основании инструкций и директивных документов.
· Критерии оценки по разделу Комплексирование геофизических методов.
Коллоквиум.
Литература к разделу: Комплексирование геофизическихметодов
Основная:
1. Геофизика: учебник /Под ред. В.К. Хмелевского. - М.: КДУ, 2007. – С. 254-273.
2. Геофизические методы исследования. (Под редакцией В.К.Хмелевского). Учебное пособие. – М.: Недра, 1988. – С. 277-287.
3. Ники тин А.А., Хмелевской В.К. Комплексирование геофизических методов: учебник для вузов. –Тверь: ООО «Изд-во ГЕРС», 2004. – 294 с.
Дополнительная:
1.Геоэкологическое обследование предприятий нефтяной промышленности /Под ред. Проф. В.А.Шевнина и доц. И.Н.Модина. – М.:РУССО, 1999.
2.Огильви А.А. Основы инженерной геофизики: Учеб. Для вузов/Под редакцией В.А.Богословского. – М.: Недра, 1990.
При подготовке лекций автор использовал известные учебники и учебные пособия, и справочники по геофизики. В числе этих источников работы Богословского В.А. и др (под ред. В.К. Хмелевского, 2007), Вахромеева Г.С. и Давыденко А.Ю. (1989), Мишона В.М. (1993), Огильви А.А. (1990) Орлёнка В.В.(2000), Хмелевского В.К.(1997), а также лекции профессора ЮФУ Фоменко Н.Е..
Авторам этих работ я выражаю благодарность за возможность применить их замечательные наработки в своих лекциях.
Дата добавления: 2015-08-21; просмотров: 3220;