Локальный (дифференциальный) признак потенциальности электростатического поля.

 

Найдем циркуляцию вектора по бесконечно малому плоскому прямоугольному контуру , расположенному в районе некоторой точки, в декартовой системе координат. Нас будет интересовать конфигурация (линейные размеры) этого контура, поэтому изобразим его достаточно большим. Выберем направление обхода по контуру – против часовой стрелки.

Т.к. величины dx и dy являются очень маленькими, можно считать, что и поле на протяжении этих отрезков также одинаково; будем обозначать поле в каждой точке стороны 1 как , поле в каждой точке стороны 2 как , и так далее. Интеграл по замкнутому контуру в данном случае мы можем заменить на сумму четырех слагаемых:

Теперь заметим, что выражение по сути является приращением y-ковой составляющей поля при переходе из 1 в 3 вдоль оси x. Тогда наше выражение приблизительно равно:

Мы нашли циркуляцию вектора по элементарному контуру.

Аналогично для элементарных прямоугольных контуров в плоскостях yz и zx можно получить:

А так как циркуляция вектора по любому контуру равна нулю, то можно сделать вывод, что в потенциальном поле выполняются одновременно все 3 следующих равенства:

(*)

То, что выписано – необходимый, а в электростатике – и достаточный признак потенциальности электрического поля в декартовой системе координат.

Выполнение этих равенств проверить на практике гораздо проще, чем проверять интегральный признак потенциальности электростатического поля.

Итак, поле является потенциальным в области, если условия (*) выполняются в каждой точке этой области.

Условия (*) можно компактно записать в векторной форме, если ввести в рассмотрение вектор "ротор" напряженности электрического поля (см. Замечание).

Замечание

Ротор вектора определим следующим образом

Векторное произведение вектора оператора градиента и вектора напряженности электрического поля, или ротор можно записать через детерминант

Следовательно, для электростатического поля имеем

 

 








Дата добавления: 2015-08-21; просмотров: 638;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.