Методы математического программирования.
Они позволяют выбрать совокупность чисел, являющихся переменными в уравнениях и обеспечивающих экстремум некоторой функции при ограничениях, определяемых условиями работы планируемого объекта.
В зависимости от свойств функций, используемых в моделях математического программирования, модели разделяются на следующие классы:
а) модели линейного программирования, в которых применяются линейные зависимости между планируемыми параметрами;
б) модели нелинейного программирования, в которых некоторые функции нелинейны;
в) модели целочисленного программирования, в которых переменные в уравнениях по своему физическому смыслу могут принимать лишь ограниченное число дискретных значений;
г) модели параметрического программирования, если исходные параметры при переменных в моделях могут изменяться в некоторых пределах;
д) модели стохастического программирования, если с их помощью решаются в процессе планирования задачи экстремума при наличии случайных параметров в их условиях;
е) модели динамического программирования, позволяющие
находить оптимальные решения по конечным результатам предыдущих решений;
ж) модели блочного программирования, которые в процессе
планирования позволяют точно или приблизительно получать оптимальные решения задач больших размеров по решениям ряда задач с меньшим числом переменных ограничений.
Дата добавления: 2015-08-14; просмотров: 705;