Методы экологии
Методическую основу современной экологии составляет сочетание системного подхода, натурных наблюдений, эксперимента и моделирования. Экология давно уже перестала быть чисто описательной дисциплиной, сейчас в ней преобладают количественные методы — измерения, расчеты, математический анализ. Разнообразие исследовательских и прикладных задач влечет за собой и разнообразие применяемых в экологии методов. Их можно объединить в несколько групп.
Методы регистрации и оценки состояния средыявляются необходимой частью любого экологического исследования. К ним относятся метеорологические наблюдения; измерения температуры, прозрачности, солености воды и анализ ее химического состава; определение характеристик почвенной среды, измерения освещенности, радиационного фона, напряженности физических полей, определение химической и бактериальной загрязненности среды и т.п. К этой же группе методов следует отнести мониторинг—периодическое или непрерывное слежение за состоянием экологических объектов и за качеством окружающей среды. Большое практическое значение имеет регистрация состава и количества вредных примесей в воде, воздухе, почве, растениях в зонах антропогенного загрязнения, а также исследования переноса загрязнителей в разных средах. В настоящее время техника экологического мониторинга быстро развивается, используя новейшие методы физико-химического и химического экспресс-анализа, дистанционного зондирования, компьютерной обработки данных. Важным средством экологического мониторинга, позволяющим в ряде случаев получить интегральную оценку качества среды, является биоиндикация — использование для контроля состояния среды некоторых организмов, особо чувствительных кизменениям среды и к появлению в ней вредных примесей.
Методы количественного учета организмов и методы оценки биомассы и продуктивности растений и животных лежат в основе изучения природных сообществ. Для этого применяются подсчеты особей на контрольных площадках, в объемах воды или почвы, маршрутные учеты, отлов и мечение животных, наблюдения за их перемещениями вплоть до аэрокосмической регистрации численности стад, скоплений рыбы, густоты древостоя, состояния посевов и урожайности полей. Изучение динамики численности популяций потребовало введения в экологию методов демографии. Все это необходимо для овладения управлением экосистемами, для предотвращения гибели видов и снижения биологического разнообразия и биопродуктивности экосистем.
Исследования влияния факторов среды на жизнедеятельность организмов составляют наиболее разнообразную группу методов экологии. В их число входят различные, подчас сложные и длительные наблюдения в природе. Но чаще применяются экспериментальные подходы, когда в лабораторных условиях регистрируется воздействие строго контролируемого фактора на те или иные функции растений или животных, а также анализируется применимость полученных на животных результатов к экологии человека. Этим путем устанавливаются оптимальные или граничные условия существования. В частности, так определяются критические и летальные дозы химических веществ, по которым рассчитывают предельно допустимые концентрации и воздействия, лежащие в основе экологического нормирования. В данном случае экология смыкается с физиологией, биохимией, токсикологией. Эколог использует применяемую в этих дисциплинах экспериментальную технику. Методы этой категории важны также при определении устойчивости экосистем и изучении адаптаций — приспособлений растений, животных и человека к различным условиям среды.
Методы изучения взаимоотношения между организмами в многовидовых сообществах.
Эти методы составляют важную часть системной экологии. натурные наблюдения и лабораторные исследования пищевых отношений, пищевого поведения, опыты с переносом , например, радиоактивных изотопов, с помощью которых определяют какое количество органического вещества и энергии переходит от одного звена пищевой цепи к другому: от растений — ктравоядным животным, от травоядных — кхищникам. В ряде случаев для этих целей создают искусственные, частично замкнутые и самоподдерживающиеся многовидовые системы.
Методы математического моделированияприобретают все большее значение в экологии. Потребность в них для целей управления и прогнозирования очень близкие к реальным процессам математические модели техногенных эмиссий, распространения токсикантов в атмосфере, самоочищения рек. Намного сложнее моделирование экологических систем. В свое время были получены обобщенные аналитические модели многих экологических процессов. Но реальные объекты экологии столь сложны, что с трудом поддаются строгому описанию даже при значительном упрощении задач. В большинстве случаев речь идет омногоуровневых задачах с большим числом переменных. В последние годы благодаря мощным компьютерам нового поколения и новым средствам программирования появилась возможность решения ряда сложных системных экологических задач.
Предмет экологии
Вероятно, лучше всего можно определить содержание современной экологии, исходя из концепции уровней организации, которые составляют своеобразный «биологический спектр», как это показано на рис.. 1.1. Сообщество, популяция, организм, орган, клетка и ген — основные уровни организации жизни; на рис. 1 они расположены в иерархическом порядке — от крупных систем к малым. На каждой ступени, или уровне, в результате взаимодействия с окружающей физической средой (энергией и веществом) возникают характерные функциональные системы. Под системой в соответствии с тем же словарем мы подразумеваем «упорядоченно взаимодействующие и взаимозависимые компоненты, образующие единое целое».
Рис. 1 Спектр уровней организации.
Экология изучает уровни, находящиеся в правой части спектра, т. е. уровни организации от организмов до экосистем. В экологии значение термина популяция, первоначально обозначавшего группу людей, расширено и обозначает группы особей любого вида организмов. Точно так же сообщество (иногда называемое еще биотическим сообществом) в экологическом смысле включает все популяции, занимающие данный участок. Сообщество и неживая среда функционируют совместно, образуя экологическую систему, или экосистему. Сообществу и экосистеме приблизительно соответствуют часто употребляемые в европейской и русской литературе термины биоценоз и биогеоценоз (буквально жизнь и земля, функционирующие вместе). Самая крупная в смысле «самообеспечения» биологическая система которую мы знаем, — это биосфера, она включает живые организмы Земли, находящиеся во взаимодействии физической средой.
Так как каждый уровень в спектре биосистемы «интегрирован», т. е. взаимосвязан с другими уровнями, здесь нельзя найти резких границ или разрывов в функциональном смысле. Их нет даже между организмом и популяцией. Например, организм, изолированный от популяции, не в состоянии жить долго, точно так же, как изолированный орган не может длительное время сохраняться как самоподдерживающаяся единица без своего организма. Подобным же образом сообщество не может существовать, если в нем не происходит круговорот веществ и в него не поступает энергия. Тот же аргумент можно привлечь для опровержения уже упоминавшегося неверного представления о том, будто бы человеческая цивилизация может существовать независимо от мира природы.
По мере объединения компонентов, в более крупные функциональные единицы, у этих новых единиц возникают новые свойства, отсутствовавшие на предыдущем уровне. Таким образом рождается понятие о несводимых свойствах,(принцип эмерджентности) суть которого заключается в том, что свойства целого невозможно свести к сумме свойств его частей. Для иллюстрации проведем следующий пример: водород и кислород, соединяясь в определенном соотношении, образуют воду, жидкость, совершенно непохожую по своим свойствам на исходные газы.
Экосистемы, основные свойства и системные законы
Экосистема основана на единстве живого и неживого вещества. Суть этого единства проявляется в следующем. Из элементов неживой природы, главным, молекул СО2 и Н20, под воздействием энергии синтезируются органические вещества, составляющие все живое на планете. Процесс создания вещества в природе происходит одновременно с противоположным процессом – потреблением и разложением этого вещества вновь на исходные неорганические соединения. Совокупность этих процессов протекает в рамках экосистем различных уровней иерархии. Чтобы эти процессы были уравновешены, природа за миллиарды лет отработала определенную, структуру живого вещества системы.
Движущей силой в любой материальной системе служит энергия. В экосистемы она поступает главным образом от Солнца. Растения за счет содержащегося в них пигмента хлорофилла улавливают энергию излучения Солнца и используют ее для синтеза основы органического вещества - глюкозы С6Н1206. Это есть процесс фотосинтеза:
| |||
6СО2 + 6Н2О С6Н12О6 + 6О2
Излишек атомов кислорода выделяется в атмосферу в газообразной форме. Кинетическая энергия солнечного излучения преобразуется, таким образом, в потенциальную энергию, запасенную глюкозой. Из глюкозы вместе с получаемыми из почвы минеральными элементами питания -биогенамиобразуются все ткани растительного мира - белки, углеводы, жиры, липиды, ДНК, РНК, то есть органическое вещество планеты.
Кроме растений продуцировать органическое вещество могут некоторые бактерии. Они создают свои ткани, запасая в них, как и растения, потенциальную энергию из углекислого газа без участия солнечной энергии. Вместо нее они используют энергию, которая образуется при окислении неорганических соединений, например, аммиака, железа и особенно серы (в глубоких океанических впадинах, куда не проникает солнечный свет, но где в изобилии скапливается сероводород, обнаружены уникальные экосистемы). Это так называемая энергия химического синтеза, поэтому организмы называются хемосинтетиками.
Таким образом, растения и хемосинтетики создают органическое вещество из неорганических составляющих с помощью энергии окружающей среды. Их называют продуцентамиили автотрофами.Высвобождение запасенной продуцентами потенциальной энергии обеспечивает существование всех остальных видов живого на планете. Виды, потребляющие созданную продуцентами органику как источник вещества и энергии для своей жизнедеятельности, называются консументами или гетеротрофами.
Консументы - это самые разнообразные организмы (от микроорганизмов до синих китов): простейшие, насекомые, пресмыкающиеся, рыбы, птицы и, наконец, млекопитающие, включая человека. Консументы, в свою очередь, подразделяются на ряд подгрупп а соответствии с различиями в источниками их питания.
Животные, питающиеся непосредственно продуцентами, называются первичными консументами или консументами первого порядка. Их самих употребля- ют в пищу вторичные консументы. Например, кролик, питающийся морковкой, - это консумент первого порядка, а лиса, охотящаяся за кроликом, - консумент второго порядка. Некоторые виды живых организмов соответствуют нескольким таким уровням. Например, когда человек ест овощи - он консумент первого порядка, говядину - консумент второго порядка, а, употребляя в пищу хищную рыбу, выступает в роли консумента третьего порядка,
Первичные консументы, питающиеся только растениями, называются растительнояднымиили фитофагами.Консументы второго и более высоких порядков – плотоядные.Виды, употребляющие в пищу как растения, так и животных, относятся к всеядным, например, человек. Мертвые растительные и животные остатки, например опавшие листья, трупы животных, продукты систем выделения, называются детритом. Это органика. Существует множество организмов, специализирующихся на питании детритом. Они называются детритофагами.Примером могут служить грифы, шакалы, черви, раки, термиты, муравьи и т.п. Как и в случае обычных консументов, различают первичных детритофагов, питающихся непосредственно детритом, вторичных и т. п. Наконец, значительная часть детрита в экосистеме, в частности опавшие листья, валежная древесина, в своем исходном виде не поедается животными, а гниет и разлагается в процессе питания ими грибов и бактерий.
Поскольку роль грибов и бактерий столь специфична, их обычно выделяют в особую группу детритофагов и называют редуцентами.Редуценты служат на Земле санитарами и замыкают биогеохимический круговорот веществ, разлагая органику на исходные неорганические составляющие - углекислый газ и воду.
Таким образом, несмотря на многообразие экосистем, все они обладают структурнымсходством. В каждой из них можно выделить фотосинтезирующие растения - продуценты, различные уровни консументов, детритофагов и редуцентов. Одна из общих черт всех экосистем, будь то наземные, пресноводные, морские или искусственные экосистемы (например, сельскохозяйственные), — это взаимодействие автотрофных и гетеротрофных компонентов. Организмы, участвующие в различных процессах круговорота, частично разделены в пространстве; автотрофные процессы наиболее активно протекают в верхнем ярусе («зеленом поясе»), где доступен солнечный свет. Гетеротрофные процессы наиболее интенсивно протекают в нижнем ярусе («коричневом поясе»), где в почвах и осадках накапливаются органические вещества. Кроме того, эти основные функции компонентов экосистемы частично разделены и во времени, поскольку возможен значительный временной разрыв между продуцированием органического вещества автотрофными организмами и его потреблением гетеротрофами. Прежде чем будет использовано все это накопленное органическое вещество, могут пройти многие недели, месяцы, годы или даже тысячелетия: (в случае ископаемых видов топлива, которые сейчас быстро расходуются человеком). Они и составляют биотическую структуру экосистем.
Таким образом экосистемой называют совокупность продуцентов, консументов и детритофагов, взаимодействующих друг с другом и с окружающей их средой посредством обмена веществом, энергией и информацией таким образом, что эта единая система сохраняет устойчивость в течение продолжительного времени.
Для естественной экосистемы характерны три признака:
1) экосистема обязательно представляет собой совокупность живых и неживых компонентов;
2) в рамках экосистемы осуществляется полный цикл, начиная с создания органического вещества и заканчивая его разложением на неорганические составляющие;
3) экосистема сохраняет устойчивость в течение некоторого времени, что обеспечивается определенной структурой биотических и абиотических компонентов.
Экосистемы, как и любые другие системные образования, представляют собой совокупность множества элементов, образующих определенную целостность, единство. Другое определение экосистемы – единое целое, состоящее из упорядоченно взаимодействующих и взаимосвязанных компонентов.
Nbsp; Рис. 2 Структура и функционирование экосистемы
Лекция № 2
Дата добавления: 2015-08-11; просмотров: 838;