Сгорания. Чтобы исключить эксергетические потери за счет неравновесного теплообмена с горячим источником теплоты
Чтобы исключить эксергетические потери за счет неравновесного теплообмена с горячим источником теплоты, целесообразно использовать в качестве рабочего тела газы, получающиеся при сгорании топлива. Это удается осуществить в двигателе внутреннего сгорания (ДВС), сжигая топливо непосредственно в его цилиндрах.
Теоретический цикл ДВС состоит из адиабатного сжатия 1-2 рабочего тела в цилиндре, изохорного 2-3 или изобарного 2-7 подвода теплоты, адиабатного расширения 3-4 или 7-4 и изохорного отвода теплоты 4-1 (рис. 1.35).
Рис. 1.35. Циклы ДВС
а-1 (1 такт) – в цилиндр через всасывающий клапан поступает смесь воздуха и паров горючего (нетермодинамичемкий процесс); 1-2 (2 такт) – адиабатное сжатие (повышается температура); 2-3 – сгорание горючей смеси, давление быстро возрастает при постоянном объеме (подвод теплоты q1); 3-4 (3 такт) – адиабатное расширение (рабочий процесс, совершается полезная работа); 4-а – открывается выхлопной клапан и отработанные газы покидают цилиндр давление цилиндра падает (отводится тепло q2). 1-а (4 такт) – выталкивание оставшихся в цилиндре газов. Затем процесс повторяется.
Описанный процесс является необратимым (наличие трения, химической реакции в рабочем теле, конечные скорости поршня, теплообмен при конечной разности температур и т.п.).
В реальных двигателях подвод теплоты осуществляется путем сжигания топлива. Если пары бензина перемешаны с необходимым для горения воздухом до попадания в цилиндр, смесь сгорает в цилиндре практически мгновенно. Подвод теплоты оказывается близким к изохорному. Если же в цилиндре сжимается только воздух и уже затем впрыскивается топливо, то его подачу можно отрегулировать таким образом, чтобы давление в процессе сгорания оставалось приблизительно постоянным, и условно можно говорить об изобарном подводе теплоты.
Чтобы не делать цилиндр двигателя очень длинным, а ход поршня слишком большим, расширение продуктов сгорания в ДВС осуществляют не до атмосферного давления р1, а до более высокого давления p4, а затем открывают выпускной клапан и выбрасывают горячие (с температурой Т4) продукты сгорания в атмосферу. Избыточное давление р4-р1 при этом теряется бесполезно. В идеальном цикле этот процесс заменяется изобарным отводом теплоты 4-1.
Отношение полного объема цилиндра к объему камеры сгорания называется степенью сжатия двигателя ε. Применительно к идеальному циклу (см. рис. 1.35)
Степень сжатия является основным параметром, определяющим термический КПД цикла.
Рассмотрим два цикла с одинаковыми точками 1 и 4, один из которых (1/-2/-3/-4/) имеет большую степень сжатия ε, чем другой (1-2-3-4). Большему значению ε соответствует более высокая температура в конце сжатия 1-2. Следовательно, изохора 2/-3/ расположена в Т, s - диаграмме выше, чем изохора 2-3. Из рис. 1.35 б, видно, что количество теплоты q1, подведенной в цикле 1-2/-3/-4 (площадь 2/-3/-5-6), больше, чем количество теплоты, подведенной в цикле 1-2-3-4 (площадь 2-3-5-6). Количество отведенной теплоты q2 в обоих циклах одинаково (площадь 4-5-6-1). Следовательно, термический КПД больше в цикле 1-2/-3/-4.
Термический КПД цикла двигателя внутреннего сгорания увеличивается с ростом степени сжатия ε. Нетрудно получить аналитическую зависимость от ε, например, для цикла со сгоранием при v = const. При постоянной теплоемкости
При одинаковых показателях адиабаты k процессов сжатия и расширения
Тогда для рассматриваемого цикла
.
Дата добавления: 2015-08-11; просмотров: 878;