Методы оптимизации реакций организма.

1. Рациональный подбор газовой среды. Как показал В. П. Николаев, важнейшие требования, предъявляемые к искусственной дыхательной среде при различных давлениях, – обеспечение нормального снабжения организма кислородом и нормальная плотность, – могут быть выполнены путем создания газовых смесей того или иного состава.

• В отношении содержания кислорода вопрос решается сравнительно просто. Обычно стремятся сохранить напряжение этого газа в среде, близким к нормальному, лишь немного увеличивая его с учетом возникающих при высоких давлениях среды нарушений диффузионного процесса. Предлагается, правда, корректировать рО2 в соответствии с метаболическими потребностями. На основе принципа максимально возможного уменьшения напряжения функций дыхания и кровообращения была создана математическая модель, позволившая вывести оптимальные концентрации вдыхаемого кислорода в газовой смеси для мышечных нагрузок разной мощности. Полученные таким путем величины рО2расположились в диапазоне от 0,021 до 0,033 МПа. Более высокое парциальное давление кислорода в среде по расчетам должно выводить показатели легочной вентиляции и гемодинамики из пределов оптимальности. Кроме того, значительная гипероксия (рО2 выше 0,040-0,050 МПа) при длительных экспозициях оказывает известное токсическое действие.

• И снова приходится возвращаться к одной из сложнейших проблем гипербарической физиологии – затруднениям дыхания вследствиеповышенной плотности дыхательной среды. Этот барьер к настоящему времени удалось значительно отодвинуть благодаря широкому применению гелиевых смесей. Еще большие преимущества сулит использование в качестве разбавителя кислорода самого легкого газа – водорода. Действительно, при давлении 0,71 МПа человек в условиях дыхания смесью 97 % Н2 и 3 % О2 мог развить максимальную вентиляцию легких более чем в полтора раза большую, чем при дыхании воздухом.

Существенно облегчалось дыхание водолазов и улучшались их эргономические показатели, как было показано в эксперименте «Гидра-4», при использовании смеси 98 % Н2 и 2 % О2 (по сравнению с аналогичной гелиокислородной смесью) под давлением 1,3–2,4 МПа. В частности, снижалось усилие, затрачиваемое на создание определенной скорости потока. В результате, например, при давлении 1,3 МПа испытуемые справлялись с 10-минутной работой мощностью до 225 Вт.

• Теоретически водородно-кислородные смеси должны позволить человеку дышать под огромным давлением – 15 МПа, которое соответствует глубине 1500 м вод. ст. Взрывоопасность таких смесей легко устраняется низкими концентрациями кислорода. Однако исследователи встретились здесь с неприятным сюрпризом: неожиданно выраженным оказалось действие высокого парциального давления водорода на ЦНС. В экспериментах с мышами, экспонированными в барокамере, заполненной водородно-кислородной смесью, у животных при давлении 6–7 МПа появлялся тремор, а при 10,9 МПа – судороги. У обезьян судороги начинались при давлении около 7 МПа.

Вместе с тем водород проявляет наркотические свойства, которые выражены у данного газа всего лишь примерно в 4 раза слабее, чем у азота. Возможно, именно по этой причине у кроликов при давлении 2,8 МПа водород вызывал снижение не только двигательной, но и дыхательной активности. Человек испытывал наркотическое состояние уже при давлении водородно-кислородной смеси всего 1,5–1,8 МПа: по свидетельству участников эксперимента «Гидра-4», этот эффект напоминал «азотный наркоз», хотя и несколько отличался от последнего – эйфория была «более приятна». Такое действие водорода удается преодолеть лишь путем добавления в дыхательную смесь других компонентов – комбинируя содержание различных газов таким образом, чтобы их неблагоприятные эффекты – наркоз и НСВД – по возможности взаимно компенсировались. Так, при давлении 3 МПа была успешно применена газовая смесь такого состава: 74 % Н2, 24 % Не, 2 % О2. Предлагают, в частности, комбинации нескольких газов – гелия и водорода с неоном и азотом, – позволяющие, кроме того, смягчить неблагоприятное влияние «легких» газов на терморегуляцию организма и разборчивость речи.

• Известно, что вследствие затруднения дыхания и (или) малой чувствительности к гиперкапническому стимулу у человека в гипербарической среде зачастую проявляется тенденция к задержке СО2 в организме. Кроме того, в условиях работы при повышенном давлении с использованием респираторной аппаратуры может повышаться концентрация двуокиси углерода. Вместе с тем гиперкапния значительно усиливает наркотический эффект высокого парциального давления азота, а также токсического действия кислорода, и это может привести к развитию порочного круга, рокового для функции дыхания и чреватого дыхательной недостаточностью. Поэтому меры по возможному предотвращению накопления СО2 в дыхательной смеси служат неотъемлемым элементом оптимизации гипербарической среды.

Устранению одышки и тем самым повышению работоспособности способствует создание небольшого положительного давления (+10 см вод. ст.) в дыхательных путях. Принципиально новым способом разгрузки дыхательной мускулатуры от тяжелой работы по преодолению сопротивления, обусловленного повышенной плотностью газовой среды, является применение искусственной или вспомогательной вентиляции легких. Пока такой способ в основном находится на стадии экспериментирования. С этой целью для опытов на лабораторных животных разработан специальный поршневой респиратор, осуществляющий вентиляцию через эндотрахеальный катетер, причем газовая смесь в фазу вдоха нагнетается в легкие, а выдох (он в полтора раза длительнее вдоха) осуществляется пассивно. Теоретически возможно использование и другого способа, основанного на создании колебаний давления в емкости (барокамере или «подводном доме»), где находится человек. Перспективность этого пути весьма вероятна.

• В настоящее время получила развитие идея создания так называемой активной газовой среды, которая стимулировала бы формирование активных адаптивных реакций организма на неблагоприятные условия. В этом плане кажется перспективным использование нестационарной искусственной атмосферы с циклично изменяющимся газовым составом. Можно думать, что исследования, развернувшиеся в этом направлении, помогут в ближайшем будущем решить данную проблему.

2. Дыхательная тренировка. Другим методом повышения толерантности организма к гипербарической среде может быть дыхательная тренировка. В условиях плотной газовой среды уменьшению затрат энергии на вентиляцию в легких способствует переход на медленное и глубокое дыхание. В частности, И. С. Бреслав (1975) показал, что обучение такому режиму дыхания позволяет успешно выполнить мышечную работу в условиях значительного сопротивления инспираторным и экспираторным потокам. Подобную тренировку проходят водолазы.

Представляется целесообразной предварительная тренировка к искусственному сопротивлению вдоху. Увеличение работоспособности дыхательных мышц получали и с помощью систематической произвольной гипервентиляции легких, особенно в сочетании с резистивной нагрузкой.

В литературе встречаются сообщения о том, что у профессиональных водолазов дыхание и без какой-либо специальной тренировки медленное и глубокое, что у них значительно больше средние легочные объемы и, наконец, что у них и в нормальных условиях ослаблена реакция дыхания на гиперкапнию – уменьшен наклон кривых (параметр Sv) роста вентиляции и окклюзионного давления в ответ на прогрессивное увеличение рСО2 и повышено пороговое значение рСО2. В связи с этим у водолазов альвеолярное напряжение двуокиси углерода выше, чем у представителей других профессий – и не только в гипербарической, но и в обычной среде, а при мышечной работе может даже превышать 80 мм рт. ст. Здесь, правда, у некоторых авторов возникает сомнение: не является ли это следствием профессионального отбора людей для работы под водой по каким-то признакам, с которыми указанные особенности связаны? Тем более что, как выяснилось, многие из этих особенностей не коррелируют с водолазным опытом. Предлагалось даже специально отбирать индивидов с уменьшенной реакцией дыхания на физическую нагрузку, поскольку высокий уровень легочной вентиляции в плотной газовой среде, естественно, резко увеличивает энерготраты на работу дыхательных мышц, а снижение усилия, затрачиваемого этими мышцами, уменьшает выраженность одышки.

По другому пути пошли исследователи, в течение 5 месяцев тренировавшие респираторную мускулатуру водолазов с помощью дыхания через добавочное сопротивление (диафрагма с отверстием 8–6,5 мм): тренированные таким способом люди показали в условиях давления гелиокислородной смеси 4,6 МПа более высокие уровни легочной вентиляции, чем нетренированные.

И все же по крайней мере часть функциональных сдвигов в системе дыхания является несомненным результатом систематического воздействия факторов гипербарии. Сюда можно отнести уменьшение максимальных экспираторных потоков с одновременным увеличением форсированной жизненной емкости легких, повышение силы дыхательных мышц и т. д. Правда, со временем подобные перестройки могут терять свое приспособительное значение и приобретать патологический характер.

Некоторые исследователи наблюдали в ходе пребывания в гипербарической среде повышение максимальной произвольной вентиляции. Это явление частично можно объяснить уменьшением сопротивления дыханию вследствие бронходилятации, рефлекторно наступающей при тяжелой работе и гиперкапнии, а частично – тренировкой дыхательной мускулатуры. В свою очередь, увеличение функционального резерва аппарата дыхания оказывает положительное влияние на работоспособность. Мы упоминали «азотный наркоз» в качестве неблагоприятного фактора, который может усугубить эффекты, связанные с затруднением дыхания из-за повышенной плотности дыхательной среды. При повторных экспозициях влияние этого фактора на физиологические функции удается значительно ослабить: улучшается способность человека к самоконтролю. В условиях использования гелиокислородных дыхательных смесей под высоким давлением водолазы научаются подавлять мышечный тремор. Вместе с тем для работы в таких условиях предлагалось отбирать индивидов, мало подверженных проявлениям нервного синдрома высоких давлений. Кроме того, возбуждающее действие этого синдрома на ЦНС может способствовать повышению активности центрального дыхательного механизма. То же может происходить в начальных стадиях «азотного наркоза». Аналогичное действие могут оказывать факторы неспецифического характера – стрессорное состояние, эмоциональный подъем, сопряженный с пребыванием в необычных условиях, хотя в некоторых случаях те же факторы могут отрицательно сказаться на работоспособности. В этом, надо думать, заключается причина того, что МВЛ обычно оказывается выше расчетной для данной плотности. Сообщалось, что выше расчетной оказывались и максимально выполнимые кратковременные мышечные усилия нагрузки.

Таким образом, профессиональный отбор и соответствующая подготовка человека могут повысить его устойчивость к неблагоприятным эффектам гипербарии.








Дата добавления: 2015-08-11; просмотров: 1113;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.