Установка непрерывного коксования в псевдоожиженном слое порошкообразного кокса (термоконтактного коксования)
В отличие от замедленного коксования термоконтактное коксование (ТКК) является непрерывным, высокопроизводительным, технологически более универсальным процессом, позволяющим перерабатывать исключительно разнообразные нефтяные остатки, такие, как мазуты, гудроны, асфальты, природные битумы.
Целевым назначением процесса ТКК является получение из нефтяных остатков дистиллятных продуктов, богатых ароматическими углеводородами, направляемых на последующую каталитическую переработку в высококачественные моторные топлива и газа, содержащего до 50 % (об.) непредельных углеводородов.
Порошкообразный кокс ТКК является по сравнению с коксом ЗК побочным, малоценным продуктом, не пригодным для изготовления анодных и графитированных изделий, что является существенным недостатком, ограничивающим более широкое распространение этого процесса в мировой нефтепереработке.
ТКК был разработан в послевоенные годы (1947-1954 гг.) одновременно в США (фирмой «Стандарт Ойл Девелопмент» под названием «Флюидкокинг») и бывшем СССР (МИНХ и ГП, ВНИИ НП и АзНИИ). В настоящее время в эксплуатации на НПЗ США, Канады, Японии, Мексики, Венесуэлы и Голландии находятся около 20 установок «Флюидкокинг». Разработан проект отечественной промышленной установки ТКК, однако этот процесс до сих пор не внедрен на НПЗ нашей страны.
Установка термоконтактного крекинга состоит из реакторного блока (реактор, коксонагреватель, сепаратор-холодильник кокса, воздуходувка и др.) и блока разделения (парциальный конденсатор, ректификационная колонна, отпарная колонна, газосепаратор). Технологическая схема установки представлена на рис. 10.
Сырье — гудрон, отводимый с низа вакуумной колонны, или мазут с низа атмосферной колонны — подается насосом 14 в реактор 11 через систему распылителей 9 (форсуночного типа) под уровень псевдоожиженного слоя частиц кокса, (диаметром 40-1000 мкм), непрерывно циркулирующего между реактором и коксонагревателем, выполняющего функции теплоносителя и контакта, на поверхности которого отлагается образующийся кокс. Форсунки размещаются обычно по высоте слоя в несколько ярусов, на крупных установках их число достигает 100.
Температура псевдоожиженного слоя в реакторе 500-560 °С. При этой температуре даже очень тяжелое сырье имеет низкую вязкость и благодаря интенсивному перемешиванию равномерно покрывает поверхность микросферического кокса. Физического тепла нагретых в коксонагревателе коксовых частиц достаточно для испарения части сырья и осуществления эндотермических реакций крекинга остального сырья, остающегося в виде жидкой пленки на коксовых микросферах. Летучие продукты реакций коксования удаляются, оставляя на поверхности коксовых частиц тонкий, всего в несколько микрон слой кокса.
Продукты коксования — газы и пары — по выходе из слоя проходят через систему циклонных сепараторов 12 для отделения коксовой пыли и поступают в скруббер — парциальный конденсатор 13, который для уменьшения закоксовывания передаточных линий расположен непосредственно на реакторе 11На верх скруббера в качестве орошения подается охлажденный тяжелый газойль. За счет контакта паров продукта с тяжелым газойлем конденсируются наиболее тяжелые компоненты паров. Сконденсированная смесь (рециркулят) забирается с низа скруббера 13 и направляется насосом 15 в реактор 11.
Частицы кокса-теплоносителя с отложившимся на них тонким слоем образовавшегося в процессе кокса (балансового кокса) опускаются в низ отпарной секции реактора, при этом они продуваются встречным потоком водяного пара. Далее они перемещаются по изогнутому трубопроводу 8 (пневмотранспорт) -в коксонагреватель 5. С помощью воздуходувки 1 под распределительную решетку 6 коксонагревателя подается воздух в объеме, необходимом для нагрева циркулирующего кокса до заданной температуры. Кокс нагревается за счет теплоты сгорания части балансового кокса. Продукты сгорания (дымовые газы) проходят двухступенчатые циклоны 4, где от них отделяются мелкие частицы кокса, и поступают в паровой котел утилизатор (на схеме не показан).
Рис.10. Аппаратно-технологическая схема термоконтактного крекинга в псевдоожиженном слое кокса:
1 – воздуходувка; 2 – топка; 3 – сепаратор-холодильник; 4,12 – циклоны; 5 – коксонагреватель; 6 – распределительная решётка; 7,18 – линии пневмотранспорта; 9 – распределитель сырья; 10 – линия подачи «горячей струи»; 11 – реактор; 13 – парциальный конденсатор (скруббер); 14-16; 20, 29 – насосы; 17, 22, 26, 28 – аппараты воздушного охлаждения; 18 – ректификационная колонна; 19отпарная колонна; 23 – холодильник; 24 – водонагреватель; 27 – паронагреватель.
Нагретый в коксонагревателе 5 кокс возвращается по изогнутому трубопроводу 7 (пневмотранспорт) в реактор 11. Транспортирующей средой также является водяной пар. Поскольку количество сжигаемого кокса меньше вновь образующегося, то избыток его в виде фракции более крупных частиц непрерывно выводится из системы через сепаратор-холодильник 3. Менее крупные частицы возвращаются из сепаратора-холодильника в коксонагре-ватель 5. Отделение мелких частиц кокса от крупных обеспечивается с помощью водяного пара, подаваемого в низ сепаратора. Выходящий с низа сепаратора 3 кокс транспортируется водяным паром в приемник (на схеме не показан). Размеры частиц кокса, циркулирующего в реакторном блоке колеблются в пределах от 0,075 до 0,300 мм, а частиц балансового кокса — от 0,4 мм и выше.
Из коксонагревателя 5 к верхнему днищу реактора 11 по линии 10 подается «горячая струя» частиц кокса. Таким образом здесь повышается концентрация частиц кокса в парах: частицы, механически воздействуя на устья циклонов 12, предотвращают их закоксовывание.
Пары бензина и воды, а также газ коксования, выходящие с верха колонны 18, охлаждаются в аппарате воздушного охлаждения 22 и холодильнике 23 и поступают в водогазоотделитель 24. Здесь происходит разделение продуктов на жирный газ, нестабильный бензин и водный конденсат. Бензин насосом 29 частично подается как орошение на верхнюю тарелку колонны 18, а балансовое его количество после теплообменника 25 направляется на стабилизацию.
С низа отпарной колонны 19 насосом 21 выводится легкий газойль. Обычно он используется как теплоноситель в теплообменнике 25 для нагрева нестабильного бензина (этот бензин передается в блок физической стабилизации, который на схеме не показан) утилизатор (на схеме не показан). Далее легкий газойль доохлаждаеться в холодильнике воздушного охлаждения 26 и выводится с установки. Тяжелый газойль выводится с низа колонны 18, насосом 20 прокачивается через парогенератор 27 и аппарат воздушного охлаждения 28. Частично тяжелый газойль используется как орошение в скруббере 13, а балансовое его количество отводится с установки.
Избыток тепла отводится из колонны 18 промежуточным циркуляционным орошением (насос 16 и аппарат воздушного охлаждения 17). Топка 2 под давлением служит для разогрева системы при пуске.
По качеству газы и дистиллятные фракции процесса ТКК близки аналогичным продуктам замедленного коксования. Жидкие продукты ТКК, содержащие значительное количество непредельных соединений, ароматических углеводородов, серы и азота, обычно подвергают гидрогенизационной обработке на установках гидроочистки со стационарным слоем катализатора. Во многих случаях такую обработку осуществляют в смеси с прямогонными фракциями, полученными на том же НПЗ. Бензины ТКК часто в смеси с газойлем используют как сырье каталитического крекинга (тритинг-процесс). Тяжелый газойль после гидроочистки, как правило, направляют вместе с прямогонным вакуумным газойлем на каталитический крекинг.
Кокс ТКК может использоваться как энергетическое топливо или подвергаться газификации с получением низкокалорийного топливного газа или технологических газов (водорода или смеси водорода и оксида углерода). В последние годы за. рубежом получают применение процессы ТКК, совмещенные с газификацией (парокислородовоздуш-ной) порошкообразного кокса, получившие название «Флексикокинг».
Дата добавления: 2015-08-11; просмотров: 3489;