Окисление жирных кислот. Жирными кислотами называют как предельные, так и непредельные высшие карбоновые кислоты, углеводородняая цепь которых содержит более 12 углеродных атомов

Жирными кислотами называют как предельные, так и непредельные высшие карбоновые кислоты, углеводородняая цепь которых содержит более 12 углеродных атомов. В организме окисление жирных кислот – чрезвычайно важный процесс, и оно может быть направлено на α, β и ω-углеродные атомы молекул карбоновых кислот. Среди этих процессов наиболее часто происходит β-окисление. Установлено, что окисление жирных кислот протекает в печени, почках, скелетных и сердечной мышцах, в жировой ткани. В мозговой ткани скорость окисления жирных кислот весьма незначительна; основным источником энергии в мозговой ткани служит глюкоза.

В 1904 г. Ф. Кнооп (F. Knoop) выдвинул гипотезу β-окисления жирных кислот на основании опытов по скармливанию собакам различных жирных кислот, в которых один атом водорода в концевой метильной группе (ω-углеродного атома) был замещен радикалом (С6Н5–).

Жирные кислоты, входящие в состав естественных жиров животных и растений, имеют четное число углеродных атомов. Любая такая кислота, от которой отщепляется по паре углеродных атомов, в конце концов проходит через стадию масляной кислоты. После очередного β-окисления масляная кислота становится ацетоуксусной. Последняя затем гидролизуется до двух молекул уксусной кислоты. Теория β-окисления жирных кислот, предложенная Ф. Кноопом, в значительной мере послужила основой современных представлений о механизме окисления жирных кислот.

β-Окисление жирных кислот. Образующийся при гидролизе жиров карбоновые кислоты подвергаются β-окислению в митохондриях, куда они поступают в виде соответствующих ацилкоферментов А. β-Окисление – это 4 последовательных ОВР.

 

І реакция. Дегидрирование

 

 

О С15Н31 Н

// дегидрогеназа \ /

С15Н31 – СН2 – СН2 – С + ФАД С = С + ФАД(2Н)

\ / \

ЅКоА Н СОЅКоА

Стерилкоэнзим А трансизомер стерилкоэнзима А

ІІ реакцияГидратация

 

С15Н31 Н О

\ / гидратаза //

С = С + Н2О С15Н31 – СН – СН2 – С

/ \ | \

Н СОЅКоА ОН ЅКоА

Трансизомер стерилкоэнзима А L-изомер β-окисикарбоноврй кислоты

ІІІ реакция Дегидрирование

 

О О

// дегидрогеназа //

С15Н31 – СН – СН2 – С + НАД+ С15Н31 – С – СН2 – С + НАДН + Н+

| \ || \

ОН ЅКоА О ЅКоА

β-оксокислота

 

ІV реакция. Расщепление

 

О О О

// тиолаза // //

С15Н31 – С – СН2 – С + НЅКоА С15Н31 – С СН3 – С

|| \ \ \

О ЅКоА ЅКоА ЅКоА

Пальмитокоэнзим А Ацетилкоэнзим А

 

На новое в цикл Кребса для

β-окисление окончательного

окисления

до СО2 и Н2О

 

Четыре рассмотренные реакции процесса β-окисления представляют собой цикл, в ходе которого происходит укорочение углеродной цепи на два углеродных атома. Пальмитокоэнзим А вновь подвергается β-окислению, повторяя данный цикл. При β-окислении одной молекулы стеариновой кислоты образуется 40 молекул АТФ, а включая и цикл Кребса, котором окисляется образующийся ацетилкоэнзим А – 146 молекул АТФ. Это говорит о важности процессов окисления жирных кислот с точки зрения энергетики организма.

α-Окисление жирных кислот. В растениях под действием ферментов происходит окисление жирных кислот по α-углеродному атому – α-окисление. Это цикл, состоящий из двух реакций.

І реакция заключается в окислении жирной кислоты пероксидом водорода с участием соответствующей пероксидазы в соответствующий альдегид и СО2.

О

Пероксидаза //

R – СН2 – СООН + 2 Н2О2 R – С + СО2

\

Н

 

В результате этой реакции углеродная цепь укорачивается на один углеродный атом.

ІІ реакция состоит в гидратации и окислении образующегося альдегида в соответствующую карбоновую кислоту под действием альдегидодегидрогеназы с окисленной формой НАД+:

О О

// альдегидо- //

R – С + Н2О + НАД+ дегидрогеназа R – С + НАД(Н) + Н+

\ \

Н ОН

 

Цикл α-окисления характерен только для растений.

ω-Окисление жирных кислот.В печени животных и у некоторых микроорганизмов существует ферментная система, обеспечивающая ω-окисление, т.е. окисление по концевой СН3-группе. Сначала под действием монооксигеназы происходит гидроксилирование с образованием ω-оксикислоты:

 

ωмонооксигеназа

СН3 – R – СООН + «О» НОСН2 – R – СООН

ω-оксикислота

 

Далее ω-оксикислота окисляется в ω-дикарбоновую кислоту:

 

НОСН2 – R – СООН + Н2О + 2НАД+ дегидрогеназа НООС– R – СООН + 2 НАД (Н) + 2Н+

ω-дикарбоновая кислота

 

Полученная ω-дикарбоновая кислота укорачивается с любого конца посредством реакции β-окисления.

Если карбоновая кислота имеет разветвления, то её биологическое окисление прекращается, дойдя до места разветвления цепи.

 

 








Дата добавления: 2015-08-11; просмотров: 815;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.