Факторные методы

Главной предпосылкой для использования факторных моделей при прогнозировании спроса является тот факт, что динамика спроса обусловлена целым рядом взаимно обусловленных причин, которые иногда можно выявить и проанализировать. Например, на уровень спроса положительно влияет уровень потребительского обслуживания. В этом случае при целенаправленной политике фирмы по повышению уровня сервиса можно ожидать увеличения объема спроса. В таких случаях говорят, что уровень обслуживания потребителей является фактором роста уровня спроса. В случае, когда удается полно и качественно выявить все причинно-следственные связи и описать их, факторные модели позволяют прогнозировать с высокой степенью точности будущие изменения спроса в средне- и долгосрочном периодах.

Факторные модели имеют несколько разновидностей

Ÿ статистические – например, регрессионные или эконометрические модели;

Ÿ дескриптивные – например, при описании объекта по методу «черного ящика», описании жизненного цикла объекта или компьютерном имитационном моделировании.

При прогнозировании результирующих показателей используются в той или иной степени статистические данные по факторным показателям. И на основании прогноза факторных показателей выстраивается прогноз результирующего показателя.

Основной проблемой, затрудняющей применение факторных моделей на практике, является то, что найти, выявить и описать причинно-следственные связи достаточно сложно. Даже если некоторые такие взаимосвязи выявлены, часто оказывается, что в рассматриваемом периоде эти связи не являются определяющими при прогнозировании спроса. Для качественного прогноза с помощью факторной модели требуется выявить и описать все наиболее важные и значимые факторы влияния, но именно это как раз и бывает сложно сделать. Кроме того, для прогноза необходимо иметь статические данные не только по результирующим, но и по факторным показателям, причем за период не менее чем 6 месяцев. Из этих проблем точность факторных моделей, к сожалению, оказывается не слишком высока.

Таблица 1. Методики прогнозирования спроса

Методика, описание, интервал прогнозирования
Дэльфи Группа экспертов опрашивается с помощью нескольких опросных листов. Результаты одного опроса используются для подготовки следующего опроса. Вся информация, необходимая для прогнозирования, должна быть доступна всем экспертам: владеющие информацией должны передать ее тем, кто не владеет ею. Техника исключает «стадный эффект», когда мнение одних экспертов влияет на мнение других экспертов. Интервал прогнозирования: среднесрочный
Маркетинговые исследования Систематические, формализованные и целенаправленные процедуры, направленные на совершенствование и проверку гипотез о реальных рынках. Интервал прогнозирования: среднесрочный
Панельные исследования Методика базируется на предположении, что несколько экспертов обеспечивают лучший прогноз, чем один эксперт. Между ними нет никаких секретов, и наоборот, коммуникации поощряются. Прогноз иногда зависит от влияния социальных факторов и может не отражать настоящего консенсуса. Интервал прогнозирования: среднесрочный
Оценки торгового персонала Мнения торгового персонала фирмы могут иметь ценность, поскольку продавцы ближе к потребителям и имеют все возможности оценить их потребности и спрос. Интервал прогнозирования: краткосрочный и среднесрочный
Метод сценариев На основании личных мнений, оценок, видения ситуации и, если возможно, фактов строится несколько сценариев будущих продаж. В основе этих сценариев лежит простое воображение, или видение того или иного сценария будущего. Этот метод, конечно, является ненаучным. Интервал прогнозирования: среднесрочный и долгосрочный
Историческая аналогия Прогноз продаж основывается на сравнении с выведением на рынок и ростом продаж аналогичных продуктов, о которых уже накоплена соответствующая статистика. Интервал прогнозирования: среднесрочный и долгосрочный
Скользящие средние Значения скользящих средних получаются как средняя арифметическая или взвешенная величина, рассчитываемая по некоторому количеству значений из временного ряда. Количество значений временного ряда, которые используется при расчете скользящей средней, выбираются так, чтобы определить основную тенденцию и удалить случайные и сезонные колебания спроса. Интервал прогнозирования: краткосрочный
Экспоненциальное сглаживание Методика экспоненциального сглаживания похожа на методику скользящих средних, только последние наблюдения имеют больший вес, чем прошлые наблюдения. Новый прогноз – это старый прогноз плюс некоторая доля последней ошибки прогнозирования. Более сложные модели экспоненциального сглаживания учитывают также тренд и сезонные колебания. Интервал прогнозирования: краткосрочный
Классический анализ временных рядов Метод декомпозиции временных рядов на тренд, сезонную и случайную составляющую. Это прекрасный инструмент, с помощью которого можно прогнозировать спрос на период от 3 до 12 месяцев. Интервал прогнозирования: краткосрочный и среднесрочный
Проекция тренда Эта методика позволяет выявить тренд с помощью математического уравнения и затем спроецировать его в будущее. Существует несколько вариантов методики: полиномы, логарифмы и пр. Интервал прогнозирования: краткосрочный и среднесрочный
Метод фокусирования Позволяет протестировать некоторое количество простых способов прогнозирования, чтобы проверить, какое из них наиболее дает наиболее точный прогноз по данным за 3-месячный период. Имитационное моделирование позволяет выполнить такой тест и проверить различные стратегии прогнозирования временного ряда. Интервал прогнозирования: среднесрочный
Спектральный анализ В модели предпринимается попытка разбить временной ряд на несколько фундаментальных компонентов.
 







Дата добавления: 2015-08-11; просмотров: 736;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.