Тиристоры. Тиристором называют полупроводниковый прибор с тремя (или более) р-n-переходами, вольт-амперная характеристика которого имеет участок с отрицательным

Тиристором называют полупроводниковый прибор с тремя (или более) р-n-переходами, вольт-амперная характеристика которого имеет участок с отрицательным дифференциальным сопротивлением и который используется для коммутаций в электрических цепях.

Простейшим тиристором с двумя выводами является диодный тиристор (динистор). Триодный тиристор (тринистор) имеет дополнительно третий (управляющий) электрод. Как диодный, так и триодный тиристоры имеют четырехслойную структуру с тремя р-n-переходами (рис. 8.11,a).

Крайние области р1 и п2 называются анодом и катодом соответственно, с одной из средних областей р2 или п1 соединен управляющий электрод. П1, П2, П3 – переходы между р- и п-областями. Источник Е внешнего питающего напряжения подключен к аноду положительным относительно катода полюсом. Если ток Iy через управляющий электрод триодного тиристора равен нулю, его работа не отличается от работы диодного. В отдельных случаях бывает удобно представить тиристор двухтранзисторной схемой замещения с использованием транзисторов с различным типом электропроводности – р-п-р и п-р-п (см. рис. 8.12, б). Как видно из рис. 8.12, переход П2 является общим коллекторным переходом обоих транзисторов в схеме замещения, а переходы П1 и П3 – эмиттерными переходами.

Рассмотрим работу тиристора при Iy = 0. При подключении источника Е эмиттерные переходы П1 и П3 смещаются в прямом направлении, а коллекторный – П2 – в обратном. Поскольку сопротивления открытых р-п-переходов незначительны, все напряжение источника практически приложено к закрытому переходу П2. Ток тиристора в этом режиме весьма мал и напряжение на нагрузочном резисторе R практически равно нулю.

а б

Рис. 8.11. Структура тиристора (а) и двухтранзисторная схема замещения (б) триодного тиристора: 1, 2, 3 – выводы катода, управляющего электрода и анода соответственно

Рис. 8.12. Вольт-амперные характеристики и условное графическое обозначение

триодного тиристора

 

При повышении прямого напряжения Uпр (что достигается увеличением ЭДС источника питания Е)ток тиристора увеличивается незначительно до тех пор, пока напряжение Uпр не приблизится к некоторому критическому значению напряжения пробоя, равному напряжению включения Uвкл (рис. 8.12).

При дальнейшем повышении напряжения Uпр под влиянием нарастающего электрического поля в переходе П2 происходит резкое увеличение количества носителей заряда, образовавшихся в результате ударной ионизации при столкновении носителей заряда с атомами. В результате ток в переходе быстро нарастает, так как электроны из слоя п2 и дырки из слоя р1 устремляются в слои р2 и п1 и насыщают их неосновными носителями заряда. Увеличение количества носителей заряда за счет действия внутренней положительной обратной связи носит лавинообразный характер, в результате чего электрическая проводимость р-n-перехода П2 резко возрастает.

После включения тиристора напряжение на нем снижается до значения порядка 0,5–1 В. При дальнейшем увеличении ЭДС источника Е или уменьшения сопротивления резистора R ток в приборе нарастает в соответствии с вертикальным участком ВАХ (рис. 8.12). Минимальный прямой ток, при котором тиристор остается во включенном состоянии, называется током удержания Iуд. При уменьшении прямого тока до значения Iпр< Iуд (нисходящая ветвь ВАХ на рис. 8.13) высокое сопротивление перехода восстанавливается и происходит выключение тиристора. Время восстановления сопротивления р-n-перехода обычно составляет 10–100 мкс.

Напряжение Uвкл, при котором начинается лавинообразное нарастание тока, может быть снижено дополнительным введением неосновных носителей заряда в любой из слоев, прилегающих к переходу П2. Эти добавочные носители заряда увеличивают число актов ионизации в р-n-переходе П2,в связи с чем напряжение включения Uвкл уменьшается.

Добавочные носители заряда в триодном тиристоре, представленном на рис. 8.12, вводятся в слой р2 вспомогательной цепью, питаемой от независимого источника напряжения. В какой мере снижается напряжение включения при росте тока управления, показывает семейство кривых на рис. 8.12. Там же приведено условное графическое обозначение триодного тиристора.

Будучи переведенным в открытое (включенное) состояние, тиристор не выключается даже при уменьшении управляющего тока Iу до нуля. Выключить тиристор можно либо снижением внешнего напряжения до некоторого минимального значения, при котором ток становится меньше тока удержания, либо подачей в цепь управляющего электрода отрицательного импульса тока, значение которого, впрочем, соизмеримо со значением коммутируемого прямого тока Iпр.

Важным параметром триодного тиристора является отпирающий ток управления Iу.вкл – ток управляющего электрода, который обеспечивает переключение тиристора в открытое состояние. Значение этого тока достигает нескольких сотен миллиампер.

Из рис. 8.12 видно, что при подаче на тиристор обратного напряжения в нем возникает небольшой ток, так как в этом случае закрыты переходы П1 и П3. Во избежание пробоя тиристора в обратном направлении (который выводит тиристор из строя из-за теплового пробоя перехода) необходимо, чтобы обратное напряжение было меньше Uобр макс.

В симметричных диодных и триодных тиристорах прямая и обратная ветви ВАХ совпадают по форме. Это достигается встречно-параллельным включением двух одинаковых четырехслойных структур или применением специальных пятислойных структур с четырьмя р-n-переходами.

В настоящее время выпускаются тиристоры на токи до 3000 А и напряжения включения до 6000 В.

Тиристоры как управляемые переключатели, обладающие выпрямительными свойствами, нашли широкое применение в управляемых выпрямителях, инверторах, коммутационной аппаратуре.

Основные недостатки тиристоров – неполная управляемость (тиристор не выключается после снятия сигнала управления) и относительно низкое быстродействие (десятки микросекунд).

Наряду с тиристорами в качестве переключающих элементов используются биполярные и полевые транзисторы, которые являются полностью управляемыми элементами.

Биполярный транзистор способен выдерживать большие токи при малом сопротивлении в режиме насыщения. К недостаткам его следует отнести невысокие значения допустимых обратных напряжений (менее 1000 В) и большие значения тока управления транзистора при насыщении.

Полевые МДП-транзисторы используют для переключения токов до 100 А при напряжении до 500 В. МДП-транзисторы управляются напряжением, подаваемым на изолированный затвор, причем для не очень высоких частот переключения мощность управляющей цепи чрезвычайно мала из-за высокого входного сопротивления транзистора. МДП-транзистор является одним из самых быстродействующих приборов, время переключения его составляет единицы наносекунд.

Сравнительно недавно был создан новый и весьма перспективный управляемый переключающий прибор, получивший название биполярный транзистор с изолированным затвором (IGBT – insulated gate bipolar transistor). Этот прибор сочетает в себе достоинства биполярных и полевых МДП-транзисторов и способен коммутировать значительные токи при высоком быстродействии, малой мощности управляющей цепи и высо­ких значениях обратных напряжений. Полупроводниковая структура прибора похожа на тиристорную (см. рис. 8.12), но со свойствами управляемого усилителя. Ток управления задается МДП-транзистором, который в свою очередь управляется напряжением. Вся полупроводниковая часть прибора выполнена в одном кристалле полупроводника. Прибор позволяет коммутировать токи до 400 А при напряжениях до 1600 В, а его быстродействие составляет десятые доли микросекунды.








Дата добавления: 2015-08-11; просмотров: 2046;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.