ПАССИВНЫЙ ТРАНСПОРТ

 

При пассивном переносе вода, ионы, некоторые низкомолекулярные соединения из-за разности концентраций свободно перемещаются и выравнивают концентрацию вещества внутри и вне клетки. В пассивном переносе основную роль играют такие физические процессы, как диффузия, осмос и фильтрация (Рис. 24-26).

 

Рис.24. Диффузия. Рис.25. Осмос. Рис.26. Фильтрация.

 

Если вещество движется через мембрану из области с высокой концентрацией в сторону низкой концентрации без затраты клеткой энергии, то такой транспорт называется пассивным, или диффузией). Различают два типа диффузии: простую и облегченную. Мембрана клетки является проницаемой для одних веществ и непроницаемой для других. Если клеточная мембрана проницаема для молекул растворенного вещества, она не препятствует диффузии.

Простая диффузия характерна для небольших нейтральных молекул (H2O, CO2, O2), а также гидрофобных низкомолекулярных органических веществ. Эти молекулы могут проходить без какого—либо взаимодействия с мембранными белками через поры или каналы мембраны до тех пор, пока будет сохраняться градиент концентрации.

Облегченная диффузия. Характерна для гидрофильных молекул, которые переносятся через мембрану также по градиенту концентрации, но с помощью специальных мембранных белков — переносчиков. Для облегченной диффузии, в отличие от простой, характерна высокая избирательность, так как белок переносчик имеет центр связывания комплементарный транспортируемому веществу, и перенос сопровождается конформационными изменениями белка.

Один из возможных механизмов облегченной диффузии может быть следующим: транспортный белок (транслоказа) связывает вещество, затем сближается с противоположной стороной мембраны, освобождает это вещество, принимает исходную конформацию и вновь готов выполнять транспортную функцию. Мало известно о том, как осуществляется передвижение самого белка. Другой возможный механизм переноса предполагает участие нескольких белков—переносчиков. В этом случае первоначально связанное соединение само переходит от одного белка к другому, последовательно связываясь то с одним, то с другим белком, пока не окажется на противоположной стороне мембраны.

Что касается транспорта ионов, то он осуществляется, как правило, с помощью диффузии через специальные ионные каналы (Рис.27).

 

Рис.27. Основные механизмы трансмембранной передачи сигнальной информации: I - прохождение растворимой в жирах сигнальной молекулы через клеточную мембрану; II - связывание сигнальной молекулы с рецептором и активация его внутриклеточного фрагмента; III - регулирование активности ионного канала; IV - передача сигнальной информации с помощью вторичных передатчиков. 1 - лекарство; 2 - внутриклеточный рецептор; 3 - клеточный (трансмембранный) рецептор; 4 - внутриклеточное превращение (биохимическая реакция); 5 - ионный канал; 6 - поток ионов; 7 - вторичный посредник; 8 - фермент или ионный канал; 9 - вторичный посредник.

Таким образом, существует несколько механизмов транспорта веществ.

Первый механизм – растворимая в липидах сигнальная молекула проходит через клеточную мембрану и активирует внутриклеточный рецептор (например, фермент). Так действует оксид азота, ряд жирорастворимых гормонов (глюкокортикоиды, минералокортикоиды, половые гормоны и тиреоидные гормоны) и витамин D. Они стимулируют транскрипцию генов в ядре клетки и, таким образом, синтез новых белков. Механизм действия гормонов заключается в стимуляции синтеза новых белков в ядре клетки, которые длительно сохраняются в клетке в активном состоянии.

Второй механизм передачи сигнала через клеточную мембрану – это связывание с клеточными рецепторами, имеющими внеклеточный и внутриклеточный фрагменты (то есть трансмембранными рецепторами). Такие рецепторы являются посредниками на первом этапе действия инсулина и ряда других гормонов. Внеклеточная и внутриклеточная части подобных рецепторов связаны полипептидным мостиком, проходящим через клеточную мембрану. Внутриклеточный фрагмент обладает ферментативной активностью, которая повышается при связывании сигнальной молекулы с рецептором. Соответственно возрастает скорость внутриклеточных реакций, в которых участвует этот фрагмент.

Третий механизм передачи информации – действие на рецепторы, регулирующие открытие или закрытие ионных каналов. К естественным сигнальным молекулам, взаимодействующим с такими рецепторами, относятся, в частности, ацетилхолин, гамма-аминомасляная кислота (ГАМК), глицин, аспартат, глутамат и другие, являющиеся медиаторами различных физиологических процессов. При их взаимодействии с рецептором происходит увеличение трансмембранной проводимости для отдельных ионов, что вызывает изменение электрического потенциала клеточной мембраны. Например, ацетилхолин, взаимодействуя с Н-холинорецепторами, увеличивает вход в клетку ионов натрия и вызывает деполяризацию и мышечное сокращение. Взаимодействие гамма-аминомасляной кислоты со своим рецептором приводит к повышению поступления ионов хлора в клетки, усилению поляризации и развитию торможения (угнетения) центральной нервной системы. Этот механизм передачи сигналов отличает быстрота развития эффекта (миллисекунды).

Четвертый механизм трансмембранной передачи химического сигнала реализуется через рецепторы, активизирующие внутриклеточный вторичный передатчик. При взаимодействии с такими рецепторами процесс протекает в четыре этапа. Сигнальная молекула распознается рецептором на поверхности клеточной мембраны, в результате их взаимодействия рецептор активизирует G-белок на внутренней поверхности мембраны. Активизированный G-белок изменяет активность либо фермента, либо ионного канала. Это приводит к изменению внутриклеточной концентрации вторичного посредника, через который уже непосредственно реализуются эффекты (изменяются процессы обмена веществ и энергии). Такой механизм передачи сигнальной информации позволяет усилить передаваемый сигнал. Так если взаимодействие сигнальной молекулы (например, норадреналина) с рецептором длится несколько миллисекунд, то активность вторичного передатчика, которому рецептор передает по эстафете сигнал, сохраняется в течение десятков секунд.

Вторичные посредники– это вещества, которые образуются внутри клетки и являются важными компонентами многочисленных внутриклеточных биохимических реакций. От их концентрации во многом зависит интенсивность и результаты жизнедеятельности клетки, и функционирование всей ткани. Наиболее известными вторичными посредниками являются циклический аденозинмонофосфат (цАМФ), циклический гуанозинмонофосфат (цГМФ), ионы кальция, калия и др.

Осмос – особый вид диффузии воды через полупроницаемую мембрану в область более высокой концентрации растворенного вещества. В результате такого движения внутри клетки создается значительное давление, которое называют осмотическим. Это давление может даже разрушить клетку.

Например, если эритроциты поместить в чистую воду, то под действием осмоса вода будет быстрее проникать в них, чем выходить. Такая среда называется гипотонической. По мере проникновения воды эритроцит будет набухать и “лопаться”. Другая ситуация – изотоническая среда. Если поместить эритроциты в воду, содержащую 0,87% поваренной соли, то осмотического давления не создается. Это объясняется тем, что при равной концентрации раствора внутри и снаружи клетки вода движется одинаково в обоих направлениях. Среда считается гипертонической, когда концентрация растворенных в ней веществ выше, чем в клетке. Клетка (эритроцит) в такой среде начинает терять воду, съеживается и гибнет.

Все эти особенности осмоса учитываются при введении лекарственных веществ. Как правило, лекарства, предназначенные для инъекций, приготавливаются на изотоническом растворе. Это предотвращает набухание или сморщивание клеток крови при введении лекарства. Капли в нос также готовят на изотоническом растворе, чтобы избежать набухания или обезвоживания клеток слизистой оболочки носа.

Осмосом объясняются и некоторые эффекты лекарств, например, слабительное действие английской соли (магния сульфат) и других солевых слабительных. В просвете кишечника они образуют гипертоническую среду. Вода под влиянием осмоса выходит из клеток кишечного эпителия, межклеточного пространства и крови в просвет кишечника, растягивает стенки кишечника, разжижает его содержимое и ускоряет опорожнение.

Фильтрация – движение молекул воды и растворенных в ней веществ через клеточную мембрану в направлении, противоположном действию осмотического давления.

Этот процесс становится возможным, если раствор в клетке находится под давлением, которое выше осмотического. Так, например, сердце нагнетает кровь в сосуды под определенным давлением. В тончайших капиллярах это давление возрастает и становится достаточным, чтобы заставить воду и растворенные в крови вещества выйти из капилляров в межклеточное пространство. Образуется так называемая тканевая жидкость, она играет большую роль в доставке питательных веществ в клетки и удалении из них конечных продуктов обмена веществ. После выполнения своих функций тканевая жидкость в виде лимфы возвращается в кровяное русло по лимфатическим сосудам.

Фильтрация играет важную роль и в функционировании почек. В капиллярах почек кровь находится под большим давлением, что вызывает фильтрацию воды и растворенных в ней веществ из кровеносных сосудов в тончайшие почечные канальцы. Затем часть воды и необходимые организму вещества снова всасываются и поступают в общий кровоток, а оставшаяся часть образует мочу и выводится из организма.








Дата добавления: 2015-08-08; просмотров: 6338;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.