С помощью уравнений (5.3) и (5.4) можно оценить напряженное состояние грунта в любой точке, предварительно определив компоненты этих уравнений.
В основу теории предельного равновесия положено представление о том, что предельное состояние возникает во всех точках рассматриваемого массива грунтов. Тогда система уравнений, описывающая такое напряженное состояние, должна включать уравнения равновесия и условие предельного равновесия, справедливые для каждой точки массива.
Основное развитие теория предельного равновесия получила при решении плоских задач.
Строгие, приближенные и инженерные решения. Решения теории предельного равновесия в строгой постановке связаны с рядом существенных ограничений. В них предполагается, что предельное состояние возникает во всех точках массива. Кроме того, принимается условие, что массив грунта является однородным. В случае осесимметричной или пространственной задачи приходится вводить дополнительные предположения. В действительности же возможны и даже наиболее вероятны случаи, когда предельное состояние наступает не во всех точках массива, а в отдельных его областях или зонах. В большинстве случаев приходится иметь дело с неоднородными по физико-механическим свойствам массивами грунтов, поэтому в практическом отношении строгие решения теории предельного равновесия имеют ограниченное применение. Чаще используются приближенные решения, основанные на задании формы областей предельного равновесия, полученной в результате экспериментальных исследований. Во многих случаях применяются и более простые, инженерные методы оценки устойчивости массива грунтов.
Дата добавления: 2015-08-08; просмотров: 751;