Моменты инерции твердых тел
Для исследования вращательного движения вводится понятие моментов инерции. Как масса является мерой поступательного движения механической системы, так моменты инерции — мерой вращательного движения. Момент инерции механической системы относительно оси вычисляется по формуле
,
где — расстояние от точки массой до оси .
При вычислении моментов инерции сплошных твердых тел сумму заменяют интегралом
.
Моменты инерции одинаковых по форме однородных тел, изготовленных из разных материалов, отличаются друг от друга. Характеристикой, не зависящей от массы материала, является радиус инерции относительно оси . Момент инерции относительно оси в этом случае определяется по формуле
.
При решении конкретных задач очень полезна бывает теорема Штейнера, позволяющая найти момент инерции тела относительно оси , если известна величина момента инерции того же тела относительно оси проходящей через центр масс и расстояние от новой оси до оси, идущей параллельно ей через центр масс
.
Встречаются такие задачи, в которых момент инерции относительно оси вращения неизвестен, но известны моменты инерции этого тела относительно других осей, которые можно связать с некоторой координатной системой (например: декартовых , , в случае описания вращательного движения ротора с неточно установленной осью вращения). В этом случае момент инерции, относительно оси , составляющей с декартовой системой координат углы , , можно определить по формуле
,
где — единичный вектор, характеризующий направление оси относительно декартовой системы координат;
— углы между осью и координатными осями .
Дата добавления: 2015-08-08; просмотров: 1064;