Кинетическая энергия твердого тела при вращении.

Рассмотрим вращение тела вокруг неподвижной оси, которую назовем осью Z (рис.). Линейная скорость точки с массой mi, равна vi = ωR, где R, —расстояние точки до оси Z. Для кинетической энергии i-й материальной точки тела получаем выражение:

.

Полная кинетическая энергия тела

.

Поскольку входящая сюда сумма представляет собой момент инерции относительно оси Z, получаем:

(1.100)

Вычислим работу, совершаемую внешней силой при вращении твердого тела. Элемент работы .

Последнее выражение есть момент внешней силы N , таким образом,

. (1.101)

Полная работа может быть вычислена с помощью следующих формул:

. (1.202)

Приведем в заключение формулу, описывающую кинетическую энергию тела, совершающего плоское движение — поступательное, со скоростью Vc и вращение с частотой ω):

(1.103)

Кинетическая энергия при плоском движении слагается из энергии поступательного движения со скоростью центра инерции тела и энергии вращения вокруг оси, проходящей через центр инерции.








Дата добавления: 2015-08-08; просмотров: 669;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.