Рост и развитие растений
В основе роста и развития целого организма и отдельной клетки лежит обмен веществ. В процессе жизни каждого организма происходят постоянные качественные и количественные изменения, прерываемые периодами покоя. Необратимое количественное увеличение структур, объема и массы живого тела и его частей получило название роста. Развитие – это качественные изменения организма. Рост и развитие тесно связаны между собой, оба процесса регулируются на клеточном уровне. Рост органов и всего организма слагается из роста его клеток. Основные этапы роста, а также и развития на клеточном уровне – деление клеток и их растяжение, то есть увеличение клеточного потомства и увеличение их размеров. В многоклеточных организмах одним из показателей роста будет увеличение числа клеток в результате клеточного деления. Растительная клетка способна к росту растяжением, чему содействуют особенности строения ее оболочки. Особенности роста различны у разных систематических групп организмов. У высших растений рост тесно связан с деятельностью меристем. Рост, так же как и развитие, контролируется фитогормонами - химическими соединениями, вырабатываемыми в малых количествах, но способных давать значительный физиологический эффект. Фитогормоны, выработанные в одной части растения, транспортируются в другую часть, вызывая там соответствующие изменения в зависимости от генной модели воспринимающей клетки.
Известны три класса фитогормонов, действующих, по преимуществу, как стимуляторы: ауксины (индолилуксусная, нафтилуксусная кислоты) (рис. 5.6), цитокинины (кинетин, зеатин) (рис. 5.7 ) и гиббереллины (С10 – гибериллин).
Два класса гормонов (абсцизовая кислота и этилен) оказывают тормозящее действие (рис. 5.8).
Заметное воздействие на рост и развитие растений оказывают ведущие факторы среды: свет, тепло и влага. Комплекс факторов и фитогормонов действует либо независимо, либо взаимодействуя друг с другом.
Рис. 5.6. Структурные формулы ауксинов .
Рис. 5.7. Структурные формулы цитокининов
Рис. 5.8. Структурная формула абсцизовой кислоты
Интенсивность роста существенным образом связана с питанием растений, особенно с азотным и фосфорным. Типы роста различных органов определяются характером расположения меристем. Стебли и корни растут верхушками, они имеют апикальный рост. Зона нарастания листьев часто находится у их основания и они имеют базальный рост. Характер роста органа зависит от видовой специфичности. У злаков, например, рост стебля осуществляется у основания междоузлий, преобладает интеркалярный рост. Важная особенность роста растений – его ритмичность (чередование процессов интенсивного и замедленного роста). Она зависит не только от изменений внешних факторов среды, но и контролируется внутренними факторами (эндогенно), закрепленными в процессе эволюции. В целом рост растения складывается из четырех фаз: начальной, интенсивного роста, замедления роста и стационарного состояния. Это связано с особенностями различных стадий онтогенеза (индивидуального развития) растений. Так, переход растения к репродуктивному состоянию обычно сопровождается ослаблением активности меристем. Процессы роста могут прерываться продолжительными периодами торможения, наступление которых в северных широтах связано с концом лета и приближением зимы. Иногда у растений наблюдается как бы остановка роста – состояние покоя. Покой у растений – это такое физиологическое состояние, при котором резко снижаются скорость роста и интенсивность обмена веществ. Оно возникло в ходе эволюции как приспособление для переживания неблагоприятных условий среды в разные периоды жизненного цикла или сезона года. Покоящееся растение устойчиво к морозам, жаре, засухе. В состоянии покоя могут находиться растения (зимой, во время засухи), их семена, почки, клубни, корневища, луковицы, споры. Семена многих растений способны к длительному покою, обусловливающему их длительную сохранность в почве. Известен случай вызревания растения из семени одного из бобовых, пролежавшего в условиях вечной мерзлоты 10000 лет. В состоянии покоя находятся, например, клубни картофеля, благодаря чему они долго не прорастают. В понятие «развитие» вкладываются два смысла: индивидуальное развитие отдельного организма (онтогенез) и развитие организмов в ходе эволюции (филогенез). Физиология растений занимается изучением, главным образом, развития в онтогенезе.
Меристематические клетки тотипотентны (омнипотентны) – любая живая клетка может дать начало недифференцированным клеткам, способным развиваться самыми различными путями (рис. 5.9 ). Переход меристематической клетки к росту сопровождается появлением в ней вакуолей и их слиянием в центральную вакуоль, растяжением клеточных оболочек.
Рис. 5.9. Тотипотентность меристематической клетки. Производные клетки: 1 – паренхима, 2 – эпидерма, 3 – флоэма, 4 – членик сосуда ксилемы, 5 – трахеида ксилемы, 6 – склеренхимное волокно, 7 – идиобласт, 8 – колленхима, 9 – хлоренхима.
Наиболее важный момент в развитии клеток высшего растения – их дифференцировка, или специализация, то есть возникновение структурной и функциональной разнокачественности. В результате дифференцировки образуются специализированные клетки, присущие отдельным тканям. Дифференцировка осуществляется как во время растяжения, так и после окончания видимого роста клеток и определяется дифференциальной активностью генов. Дифференцировки и рост контролируется фитогормонами.
Развитие отдельных органов у растения получило название органогенеза. В целом цикле генетически обусловленное образование морфологических структур в онтогенезе называется морфогенезом. Внешние факторы, или факторы среды, также оказывают заметный эффект на рост и развитие. Свет оказывает глубокое влияние на внешнее строение растений. Свет влияет на дыхание и прорастание семян, образование корневищ и клубней, формирование цветков, на листопад, переход почек в состояние покоя. Растения, выращенные при отсутствии света (этиолированные), обгоняют в росте растения, выросшие на свету. Интенсивное освещение нередко усиливает процессы дифференцировки.
Для каждого растения существует температурный оптимум роста и развития. Температурные минимумы роста и развития в среднем лежат в интервале 5-15 ° С, оптимумы – при 35° С, максимумы – в пределах 55° С. Низкая и высокая темпера-тура может нарушать покой семян, почек, сделать возможным их прорастание и распускание. Образование цветков – это переход из вегетативного состояния в генеративное. Индуцирование (ускорение) этого процесса холодом, называют яровизацией. Без процесса яровизации многие растения (свекла, репа, сельдерей, злаки) не способны к цветению.
Огромное значение для роста, прежде всего, в фазе растяжения, имеет обеспеченность водой. Недостаток воды приводит к мелкоклеточности, отставанию в росте.
Перемещение растений в пространстве имеет ограниченный характер. Для растений свойственно, прежде всего, вегетативное движение, связанное с особенностями роста, развития и обмена веществ. Одним из примеров движения служит фототропизм – направленная реакция искривления, вызываемая односторонним освещением: при росте побеги и черешки листьев искривляются в сторону света. Многие процессы обмена веществ, роста, развития и движения подвержены ритмическим колебаниям. Иногда эти колебания следуют смене дня и ночи (циркадные ритмы), иногда связаны с длиной дня (фотопериодизм). Пример ритмических движений – ночное закрывание или открывание цветков, опускание и продольное складывание листьев, раскрытых и приподнятых в дневное время. Такие движения связаны с неравномерным тургором. Эти процессы контролируются внутренней хронометрической системой – физиологическими часами, по-видимому, существующими у всех эукариотов. У растений важнейшая функция физиологических часов – регистрация длины дня и, вместе с тем, времени года, что определяет переход к цветению или подготовку к зимнему покою (фотопериодизм). Виды, растущие на севере (севернее 60° с. ш.), должны быть преимущественно длиннодневными, поскольку их короткий вегетационный период совпадает с продолжительной длиной дня. В средних широтах (35-40° с. ш.) встречаются растения как длиннодневные, так и короткодневные. Здесь весеннее- или осеннецветущие виды относятся к короткодневным, а цветущие в разгар лета – к длиннодневным. Фотопериодизм имеет большое значение для характера распространения растений. В процессе естественного отбора у видов генетически закрепилась информация о длине дня своих местообитаний и об оптимальных сроках начала цветения. Даже у растений, размножающихся вегетативно, длина дня определяет соотношение между сезонными изменениями и накоплением запасных веществ. Виды, индифферентные к длине дня, являются потенциальными космополитами и нередко они цветут с ранней весны до поздней осени. Некоторые виды не могут выходить за пределы географической широты, определяющей их способность к цветению при соответствующей длине дня. Фотопериодизм важен и в практическом отношении, поскольку он определяет возможности продвижения южных растений на север, а северных – на юг. Одним из важных процессов, осуществляющихся в ходе индивидуального развития, является морфогенез. Морфогенез (от греческого «морфе» – вид, форма), то есть становление формы, образование морфологических структур и целостного организма в процессе индивидуального развития. Морфогенез растений обусловливается непрерывной активностью меристем, благодаря чему рост растения продолжается в течение всего онтогенеза, хотя и с разной интенсивностью. Процесс и результат морфогенеза определяются генотипом организма, взаимодействием с индивидуальными условиями развития и закономерностями развития, общими для всех живых существ (полярность, симметрия, морфогенетическая корреляция). Вследствие полярности, например, верхушечная меристема корня производит только корень, а апекс побега – стебель, листья и репродуктивные структуры (стробилы, цветки). С законами симметрии связана форма различных органов, листорасположение, актиноморфность или зигоморфность цветков. Действие корреляции, то есть взаимосвязи разных признаков в целостном организме, сказывается на характерном для каждого вида внешнем облике. Естественное нарушение корреляций в ходе морфогенеза приводит к различным тератологиям (уродствам) в строении организмов, а искусственное (путем прищипки, обрезки) – к получению растения с полезными для человека признаками.
В онтогенезе растение претерпевает возрастные изменения от эмбрионального состояния до генеративного (способного давать потомство путем образования специализированных клеток бесполого или полового размножения – спор, гамет), а затем – до глубокой старости.
Выделяют 2 группы цветковых растений по типу репродуктивных процессов: монокарпики и поликарпики. К первой группе (монокарпики) относят однолетники, часть многолетников (бамбуки), которые цветут и плодоносят только один раз в жизни. Ко второй группе (поликарпики) принадлежат многолетние травы, древесные и полудревесные растения, способные плодоносить многократно. Онтогенез цветкового растения от возникновения зародыша в семени до естественной смерти особи подразделяют на возрастные периоды – этапы онтогенеза.
1. Латентный (скрытый) – покоящиеся семена.
2. Прегенеративный, или виргинильный, – от прорастания семени до первого цветения.
3. Генеративный – от первого до последнего цветения.
4. Сенильный, или старческий, – с момента потери способности к цветению до отмирания.
В пределах этих периодов различают этапы. В группе виргинильных растений выделяют проростки (P), недавно появившиеся из семян и сохраняющие зародышевые листья – семядоли и остатки эндосперма. Ювенильные растения (Yuv), несущие еще семядольные листья, и следующие за ними ювенильные листья – более мелкие и иногда по форме еще не вполне похожие на листья взрослых особей. Имматурными (Im) считают особи, уже потерявшие ювенильные черты, но еще не вполне оформившиеся, полувзрослые. В группе генеративных растений (G) по обилию цветущих побегов, их размерам, соотношению живых и мертвых частей корней и корневищ различают молодые (G1), средневзрослые зрелые (G2) и старые генеративные особи (G3). Для высших растений очень важны процессы органогенеза. Под органогенезом понимают формирование и развитие основных органов (корня, побегов, цветков). Каждому виду растений свойствен свой темп заложения и развития органов. У голосеменных формирование репродуктивных органов, ход оплодотворения и развития зародыша достигают одного года (у ели), а иногда и больше (у сосны). У некоторых высших споровых, например у равноспоровых плаунов, этот процесс длится около 12-15 лет. У покрытосеменных процессы споро- и гаметогенеза, оплодотворения и развития зародыша происходят интенсивно, особенно у эфемеров (однолетних растений засушливых районов) – за 3-4 недели.
Для цветковых растений установлен ряд этапов органогенеза. Главнейшие из них: дифференциация стебля, закладка листьев и побегов второго порядка; дифференциация соцветия; дифференциация цветка и образование археспория в семязачатках; мега- и микроспорогенез; мега- и микрогаметогенез; зиготогенез; формирование плода и семени.
В онтогенезе организмов закономерно повторяются некоторые этапы развития, свойственные их отдаленным предкам (явление рекапитуляции). Впервые естественнонаучное объяснение рекапитуляциям дал Ч. Дарвин (1859). В 1866 г. Э. Геккель фактам повторения этапов филогенеза в онтогенезе придал форму биогенетического закона. В основе биогенетического закона лежит индивидуальное развитие особи (онтогенез), которое, в той или иной степени, представляет короткое и быстрое повторение важнейших этапов эволюции вида (филогенеза). Имеется множество примеров проявления биогенетического закона в мире растений. Так, протонема мхов, образующаяся на первых этапах прорастания споры, напоминает водоросль и свидетельствует о том, что предками мхов были, вероятнее всего, зеленые водоросли. У многих папоротников первые листья имеют дихотомическое (вильчатое) жилкование, которое было свойственно листьям ископаемых форм древних папоротников из среднего и верхнего девона. Зигоморфные цветки покрытосеменных при своем заложении проходят актиноморфную стадию. Биогенетический закон используется для выяснения особенностей филогенеза.
Дата добавления: 2015-08-08; просмотров: 1390;