Идеальный газ. Параметры состояния идеального газа.
ОПРЕДЕЛЕНИЕ: Идеальным газом называется газ, при рассмотрении свойств которого соблюдаются следующие условия:
а) соударения молекул такого газа происходят как соударения упругих шаров, размеры которых пренебрежимо малы;
б) от столкновения до столкновения молекулы движутся равномерно и прямолинейно;
в) пренебрегают силами взаимодействия между молекулами.
Реальные газы при комнатной температуре и нормальном давлении ведут себя как идеальные газы. Идеальными газами можно считать такие газы как гелий, водород, свойства которых уже при обычных условиях отвечают закономерностям идеального газа.
Состояние некоторой массы идеального газа будет определяться значениями трех параметров: P, V, T. Эти величины, характеризующие состояние газа, называются параметрами состояния. Эти параметры закономерно связаны друг с другом, так что изменение одного из них влечет за собой изменение другого. Эта связь аналитически может быть задана в виде функции:
Соотношение, дающее связь между параметрами какого-либо тела, называется уравнением состояния. Следовательно, данное соотношение является уравнением состояния идеального газа.
Рассмотрим некоторые из параметров состояния, характеризующих состояние газа:
1) Давление (P). В газе давление возникает в результате хаотического движения молекул, в результате которого молекулы сталкиваются друг с другом и со стенками сосуда. В результате удара молекул о стенку сосуда со стороны молекул на стенку будет действовать некоторая средняя сила dF. Предположим, что площадь поверхности dS, тогда . Следовательно:
ОПРЕДЕЛЕНИЕ (механистическое): Давление – это физическая величина, численно равная силе, действующей на единицу площади поверхности, нормальную к ней.
Если сила равномерно распределена по поверхности, то . В системе СИ давление измеряется в 1Па=1Н/м2.
2) Температура (Т).
ОПРЕДЕЛЕНИЕ (предварительное): Температура тела – это термодинамическая величина, характеризующая состояние термодинамического равновесия макроскопической системы.
Температура одинакова для всех частей изолированной системы, находящейся в состоянии термодинамического равновесия. Т.е., если соприкасающиеся тела находятся в состоянии теплового равновесия, т.е. не обмениваются энергией путем теплопередачи, то этим телам приписывается одинаковая температура. Если при установлении теплового контакта между телами одно из них передает энергию другому посредством теплопередачи, то первому телу приписывается большая температура, чем второму.
Любое из свойств тела (температурный признак), зависящее от температуры может быть использовано для количественного определения (измерения) температуры.
Например: если в качестве температурного признака выбрать объем и считать, что с температурой объем изменяется линейно, то выбрав за “0” температуру таяния льда, а за 100° – температуру кипения воды, получим температурную шкалу, называемую шкалой Цельсия. Согласно которой состоянию, в котором термодинамическое тело имеет объем V, следует приписывать температуру:
Для однозначного определения температурной шкалы необходимо условиться, кроме способа градуировки, также о выборе термометрического тела (т.е. тела, которое выбирается для измерения) и температурного признака.
Известны две температурные шкалы:
1) t – эмпирическая или практическая шкала температур (°C). (О выборе термометрического тела и температурного признака для этой шкалы скажем позже).
2) T – термодинамическая или абсолютная шкала (°K). Эта шкала не зависит от свойств термодинамического тела (но об этом речь пойдет позже).
Температура T, отсчитанная по абсолютной шкале, связана с температурой t по практической шкале соотношением
T = t + 273,15.
Единицу абсолютной температуры называют Кельвином. Температуру по практической шкале измеряют в град. Цельсия (°C). Значения град. Кельвина и град. Цельсия одинаковы. Температура равная 0°K называется абсолютным нулем, ему соответствует t=-273,15°C
Дата добавления: 2015-08-08; просмотров: 713;