Свойства алгоритма

Алгоритм должен быть составлен таким образом, чтобы исполнитель, в расчете на которого он создан, мог однозначно и точно следовать командам алгоритма и эффективно получать определенный результат. Это накладывает на записи алгоритма ряд обязательных требований, суть которых вытекает из приведенного выше неформального толкования понятия алгоритма. Сформулируем эти требования в виде перечня свойств, которым должны удовлетворять алгоритмы.

Дискретность (разрывность) – это свойство алгоритма, характеризующее его структуру: каждый алгоритм состоит из отдельных законченных действий. Говорят: «Делится на шаги».

Массовость – применимость алгоритма ко всем задачам рассматриваемого типа, при любых исходных данных. Например, алгоритм решения квадратного уравнения в области действительных чисел должен содержать все возможные исходы решения, т.е., рассмотрев значения дискриминанта, алгоритм находит либо два различных корня, либо два равных, либо делает вывод о том, что действительных корней нет.

Определенность (детерминированность, точность) – свойство алгоритма, указывающее на то, что каждый шаг алгоритма должен быть строго определен, и не допускать различных толкований; также строго должен быть определен порядок выполнения отдельных шагов. В алгоритмах недопустимы ситуации, когда после выполнения очередной команды исполнителю неясно, какая из команд алгоритма должна выполняться на следующем шаге.

Результативность – свойство, состоящее в том, что любой алгоритм должен завершаться за конечное число шагов. Вывод о том, что решения не существует – тоже результат. Вопрос о рассмотрении бесконечных алгоритмов остается за рамками теории алгоритмов.

Формальность – это свойство указывает на то, что любой исполнитель, способный воспринимать и выполнять инструкции алгоритма, действует формально, т.е. отвлекается от содержания поставленной задачи и лишь строго выполняет инструкции. Рассуждать «что, как и почему?» должен разработчик алгоритма, а исполнитель формально (не думая) поочередно исполняет предложенные команды и получает необходимый результат.

 








Дата добавления: 2015-08-08; просмотров: 1105;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.