Закон Гука и принцип независимости действия сил
Многочисленные экспериментальные наблюдения за поведением деформируемых тел показывают, что в определенных диапазонах перемещения точек тела пропорциональны действующим на него нагрузкам. Впервые указанная закономерность была высказана в 1776 году английским ученым Р.Гуком и носит название закона Гука.
В соответствии с этим законом перемещение произвольно взятой точки А (рис. 1.8, а) нагруженного тела по некоторому направлению, например, по оси x, а может быть выражено следующим образом:
, (1.11)
где Р - сила, под действием которой происходит перемещение u; - коэффициент пропорциональности между силой и перемещением.
Очевидно, что коэффициент зависит от физико-механических свойств материала, взаимного расположения точки А и точки приложения и направления силы Р, а также от геометрических особенностей системы. Таким образом, последнее выражение следует рассматривать как закон Гука для данной системы.
В современной трактовке закон Гука определяет линейную зависимость между напряжениями и деформациями, а не между силой и перемещением.
, (1.12)
. (1.13)
Параметры и , входящие в эти формулы, называют модулями упругости материала соответственно первого и второго рода. Они характеризуют его сопротивляемость деформированию, или жесткость в упругой стадии деформации. Численные значения и для каждого конструктивного материала определяются экспериментально. Они имеют размерности напряжений. На практике удобно использовать единицы, кратные паскалю: мегапаскаль (1 МПа=106 Па) и гигапаскаль (1 ГПа=109Па).
Системы, для которых соблюдается условие пропорциональности между напряжениями и деформациями, подчиняются принципу суперпозиции, илипринципу независимости действия сил.
В соответствии с этим принципом перемещения и внутренние силы, возникающие в упругом теле, считаются независящими от порядка приложения внешних сил. То есть, если к системе приложено несколько сил, то можно определить внутренние силы, напряжения, перемещения и деформации от каждой силы в отдельности, а затем результат действия всех сил получить как сумму действий каждой силы в отдельности. Принцип независимости действия сил является одним из основных способов при решении большинства задач механики линейных систем.
Дата добавления: 2015-08-08; просмотров: 886;