Ускорение

Для характеристики быстроты изменения скорости вводится векторная физическая величина, называемая ускорением . Она определяется аналогично скорости:

. (10)

С учетом формул (7) и (8) из (10) находим

(11)

(12)

– компоненты ускорения, они равны вторым производным соответствующих координат по времени.

С учетом формулы (9) из (10) получаем

. (13)

Можно показать, что

, (14)

где R – радиус кривизны в данной точке траектории, а – единичный вектор нормали к траектории в точке, в которой было тело в момент времени t. При этом и взаимноперпендикулярны (см. рис. 3).

Каждой точке кривой можно сопоставить окружность, которая сливается с траекторией на бесконечно малом ее участке. Радиус этой окружности R., (см. рис. 3), характеризует кривизну линии в рассматриваемой точке и называется радиусом кривизны.

Подставляя (14) в (13), получа , (15)

где

, (16)

Рис. 3
касательное или тангенциальное ускорение. По величине оно характеризует быстроту изменения модуля скорости:

. (17)

При ускоренном движении и совпадает по направлению со скоростью , при замедленном движении и противоположно скорости . Второе слагаемое в (15)

(18)

Рис. 4
– нормальное ускорение, оно характеризует быстроту изменения направления вектора скорости и всегда направлено к центру кривизны траектории. На рис. 4 показаны векторы и для случая ускоренного движения.

Модуль ускорения точки . (19)

Ускорение измеряется в метрах на секунду в квадрате (м/с2).








Дата добавления: 2015-08-08; просмотров: 566;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.