Фокусировка электронного потока в электрических полях

 

Более 100 лет назад английским ученым Гамильтоном была подмечена аналогия между распространением света и движением материальных частиц в силовом поле. Эта аналогия настолько значительна, что при рассмотрении движения электронов в электрическом поле удобно применять уравнения, определяющие прохождение света сквозь среды с различными оптическими характеристиками. Так например, оптический закон преломления

 

,

 

где и – углы, образуемые падающим ( ) и преломленным ( ) лучами с нормалью к границе раздела двух сред, имеющих показатели преломления n и n , справедлив также для электронного луча, проходящего из области потенциала U1 в область потенциала U2.

При движении электрона через границу двух сред с различными потенциалами (рис. 4.1) составляющая скорости, параллельная поверхности раздела, остается без изменения, а составляющая, перпендикулярнаяэтой поверхности, изменяется по величине (увеличивается при U2 > U1 ).

Равенство составляющих скоростей uy1 и uу2 можно записать в виде u1 sina = u2 sinb. Если электрон влетает в область потенциала U1 c нулевой начальной скоростью, то, учитывая, что скорость определяется величиной электрического поля, можно записать:

;

 

Подставляя эти значения скоростей в предыдущее уравнение, получаем

;

Из этого выражения следует, что при переходе электрона в среду с более высоким потенциалом угол отклонения его от нормали уменьшается, в противном случае электрон удаляется от нормали. При этом роль показателя преломления играет величина .

Таким образом, рассматривая поверхности равного потенциала как преломляющие поверхности оптической среды, можно, используя законы световой оптики, найти траектории электронов в электрических полях.

Расчет электрических полей, используемых для формирования, фокусировки и отклонения электронных пучков, сводится к нахождению распределения потенциала в функции координат.

В электронно-лучевых приборах для фокусировки электронных пучков служат электрические и магнитные поля, обладающие симметрией тел вращения.

Движение заряженных частиц в таких полях аналогично распространению света сквозь линзы. Любое неоднородное электрическое или магнитное поле, обладающее осевой симметрией, в приосевой области обладает свойствами электронной линзы.

В электронной оптике различают линзы – диафрагмы, одиночные линзы, иммерсионные линзы, иммерсионные объективы, электронные зеркала, магнитные линзы, квадрупольные линзы и др.

Что будет с параллельным пучком электронов, если он будет проходить из области с U1 в область с U2 и граничная поверхность сферическая (рис. 4.2).

Рис. 4.2 – Фокусировка электронов

 

При U2> U1 , когда a1 >a2, электрон пересечет ось в точке F, это фокусная точка.

Поле в этом случае обладает собирающим действием. Величину фокусного расстояния f легко найти, если d мало, электрон лежит недалеко от оси, a1 и a2 – небольшие:

Фокусное расстояние не зависит от d, т.е. электроны всего пучка собираются в одной точке (фокусе).

Аналогично для U2< U1 пучок рассеивается на границе.

Эти поля образуют электронные линзы. В практике таких линз нет. Обычно не бывает таких резких скачков потенциалов. Однако и при плавном изменении поля будет плавное изменение скорости и направления электронов.

Электронная линза состоит из двух цилиндров или двух диафрагм с разными U1 и U2 (рис. 4.3).

  U1 U2     Рис. 4.3 – Электронная линза  

Тонкие линии – это эквипотенциальные поверхности. Выпуклость внутрь цилиндра.

Допустим U2> U1. В цилиндре 2 потенциал по мере удаления от оси увеличивается и точка с тем же потенциалом располагается ближе к цилиндру 1. Аналогично и в цилиндре 1.

При U2< U1 будет то же самое. Надо перевернуть рисунок, но он симметричный.

Для U2> U1 траектория электронов показана штриховой линией. Все электроны в месте стыка цилиндров будут направлены к оси. В цилиндре 2 они встречают рассеивающее поле, и электрон будет удаляться от оси.

При любом соотношении потенциалов линза - собирающая. Преобладает собирающее поле над рассеивающим, ибо электрон первое поле проходит с меньшей скоростью, большее время подвергается действию электрического поля и сильнее отклоняется, чем во втором. Собирающее действие иммерсионной линзы (f) зависит от .








Дата добавления: 2015-08-01; просмотров: 1405;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.