СИСТЕМА ДАННЫХ

Исходная система I определяет нулевой уровень системологического анализа объекта, как комплекса систем IC, IК, IА.

На нулевом уровне конкретизируется значение полного па­раметра базирования :

W Í W1 ´ W2 ´ ... ´ Wm = {(w1 ; w2; ... wm )},

формируется описание полного состояния переменных:

V Í V1 ´ V2 ´ ... ´ Vn = {(v1 ; v2; ... vn )}.

Исходная система в итоге имеет вид (по определению) :

опр

I = (V, W) Û D0.

По сути определено множество элементов по переменным и базам, образующих начальную систему данных наблюдений (D0). Для формирования системы данных необходимо выделить отно­шения вида W ® V , т.е. упорядочить систему I, задав это отношение

d: W ® V, d Î D. (6.6.)

Упорядоченная система по d называется системой данных:

D = (V, W, d) = (I, d), (6.7.)

где (V, W) - элементы системы; d - отношения между эле­ментами.

Система данных D порождается субъектом заданием от­ношения d.

Выше приведено формальное определение системы данных.

Для систем данных, связанных с семантическими опера­циями (с семантикой), область описания D расширяется за счет включения в систему соответствующих правил вывода:

Ds = (S, d), (6.8)

где Ds - система данных с семантикой.

Методологически системы данных могут быть организова­ны как нейтральные или направленные системы, с семантикой или без нее: D, Ds, , .

Для нечетких каналов наблюдений в систему данных вво­дится мера нечеткости:

рi: Vi ® [0,1], i Î Nn ,

где рi = П рi1; р2; ...рi;...рn).

å рi = 1; 0 £ рi £ 1.

Нечеткость определяется как семантика модальности (возможно, вероятно, доверительно...).

Нечеткости описываются функциями, задаваемыми на уни­версальном отрезке (универсуме):

: W® , w Î W, (w) = p;

p = (р1; р2;…рn) Î V; р Î [0;1].

Классы нечетких мер можно определить в виде отношений на универсуме "С" из понятий , определяемых в виде системы высказываний:

С - универсум класса нечетких мер;

X1 Ì С - меры правдоподобия;

X2 Ì С - меры доверия ( убежденности );

С = X1 È Х2; Х1 Ç Х2 ¹ Æ.

Х1 Ç Х2 = Р - вероятностные меры;

Х3 - возможностные меры: X3 Ì X1;

Х4 - четкая возможность: X4 Ì X3;

Х5 - меры необходимости: X5 Ì X2;

Хб - четкая необходимость (уверенность): X6 Ì X5;

Общая система отношений имеет вид:

X6 Ì X5 Ì X2 Ì C = X1 È Х2;

X4 Ì X3 Ì X1 Ì C; X1 Ç Х2 = P.

Упражнения

1. Постройте диаграмму Эйлера для классов нечетких мер.

2. Определите систему данных в задачах, задавшись поняти­ем "исходная система":

а) два сигнала;

б) учебный процесс;

в) G/G/3/3.








Дата добавления: 2015-07-30; просмотров: 667;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.