КММ уровня непараметрической статики
Второй уровень представления КММ включает в рассмотрение отображение , определяющее правила преобразования входов в выходы , т.е. что необходимо сделать, чтобы при условии получить , адекватное целевому функционированию элемента . В общем случае — отображение может быть представлено скалярной или векторной функцией, а также функционалом или оператором. Концептуальная метамодель уровня непараметрической статики, следовательно, представляется кортежем вида
. (14)
Раскрытие структуры преобразования вида является основной задачей КММ уровня . Рассмотрим в качестве иллюстрации функциональное описание элемента , представленное скалярной функцией , причем: .
Функционирование элемента ( ) на УНС описывается как отображение . Это отображение называется функцией, если оно однозначно. Условия однозначности определяются следующим образом. Пусть заданы пары значений сигналов “вход — выход”:
. (15)
Если из условия ( ), следует, что ( ), то отображение однозначно. Значение величины в любой из пар называется функцией от данного . Общий вид записи функции позволяет дать формальное определение функции элемента в скалярной форме представления
. (16)
Таким образом, КММ (14) проинтерпретирована в КММ того же уровня, но в скалярной форме функционального представления. Отметим, что богатство концептуальных метамоделей функционирования системного элемента ( ) на уровне непараметрической статики определяется многообразием ее интерпретаций на математическом, логическом или логико-математическом языках описания (представления) -отображения.
Дата добавления: 2015-07-30; просмотров: 575;