Градиент потенциала
Градиент потенциала – это скорость возрастания потенциала в направлении кротчайшем между двумя точками.
Между двумя точками имеется некоторая разность потенциалов. Если эту разность разделить на кратчайшее расстояние между взятыми точками, то полученное значение будет характеризовать скорость изменения потенциала в направлении кратчайшего расстояния между точками.
Градиент потенциала показывает направление наибольшего возрастания потенциала, численно равен модулю напряженности и отрицательно направлен по отношению к нему.
В определении градиента существенны два положения:
1) Направление, в котором берутся две близлежащие точки, должно быть таким, чтобы скорость изменения была максимальной.
2) Направление таково, что скалярная функция в этом направлении возрастает.



Для декартовой системы координат:



Скорость изменения потенциала в направлении оси Х, Y, Z:
;
; 
Два вектора равны только тогда, когда равны друг другу их проекции. Проекция вектора напряженности на ось Х равна проекции скорости изменения потенциала вдоль оси Х, взятой с обратным знаком. Аналогично для осей Y и Z.
;
;
.
В цилиндрической системе координат выражение градиента потенциала будет иметь следующий вид:
.

А в сферической системе координат:
.

Дифференциальный оператор Гамильтона (оператор Набла)
Для сокращения записи операций над скалярными и векторными величинами употребляют дифференциальный оператор Гамильтона или оператор Набла:

Под дифференциальным оператором Гамильтона понимают сумму частных производных по 3-м координатным осям, умноженных на соответствующие единичные векторы (орты).
Применим оператор Гамильтона к потенциалу:


Правые части одинаковы, значит, будут одинаковы и левые части:

Оператор Гамильтона сочетает в себе как векторные, так и скалярные свойства и может быть применен к скалярным и векторным функциям.
Дата добавления: 2015-07-30; просмотров: 25381;
