Вероятностный подход
Рассмотрим в качестве примера опыт, связанный с бросанием правильной игральной .кости, имеющей N граней (наиболее распространенным является случай шестигранной кости: N = 6). Результаты данного опыта могут быть следующие: выпадение грани с одним из следующих знаков: 1,2,... N.
Введем в рассмотрение численную величину, измеряющую неопределенность -энтропию (обозначим ее Н). Величины N и Н связаны между собой некоторой функциональной зависимостью:
H = f (N), (1.1)
а сама функция f является возрастающей, неотрицательной и определенной (в рассматриваемом нами примере) для N = 1, 2,... 6.
Рассмотрим процедуру бросания кости более подробно:
1) готовимся бросить кость; исход опыта неизвестен, т.е. имеется некоторая неопределенность; обозначим ее H1;
2) кость брошена; информация об исходе данного опыта получена; обозначим количество этой информации через I;
3) обозначим неопределенность данного опыта после его осуществления через H2. За количество информации, которое получено в ходе осуществления опыта, примем разность неопределенностей «до» и «после» опыта:
I = H1 - H2 (1.2)
Очевидно, что в случае, когда получен конкретный результат, имевшаяся неопределенность снята (Н2 = 0), и, таким образом, количество полученной информации совпадает с первоначальной энтропией. Иначе говоря, неопределенность, заключенная в опыте, совпадает с информацией об исходе этого опыта. Заметим, что значение Н2 могло быть и не равным нулю, например, в случае, когда в ходе опыта следующей выпала грань со значением, большим «З».
Следующим важным моментом является определение вида функции f в формуле (1.1). Если варьировать число граней N и число бросаний кости (обозначим эту величину через М), общее число исходов (векторов длины М, состоящих из знаков 1,2,.... N) будет равно N в степени М:
X=NM. (1.3)
Так, в случае двух бросаний кости с шестью гранями имеем: Х = 62 = 36. Фактически каждый исход Х есть некоторая пара (X1, X2), где X1 и X2 - соответственно исходы первого и второго бросаний (общее число таких пар - X).
Ситуацию с бросанием М раз кости можно рассматривать как некую сложную систему, состоящуюиз независимых друг от друга подсистем - «однократных бросаний кости». Энтропия такой системы в М раз больше, чем энтропия одной системы (так называемый «принцип аддитивности энтропии»):
f(6M) = M ∙ f(6)
Данную формулу можно распространить и на случай любого N:
F(NM) = M ∙ f(N) (1.4)
Прологарифмируем левую и правую части формулы (1.3): ln X = M ∙ ln N, М =ln X/1n M. Подставляем полученное для M значение в формулу (1.4):
Обозначив через К положительную константу , получим: f(X) = К ∙ lп Х, или, с учетом (1.1), H=K ∙ ln N. Обычно принимают К = 1 / ln 2. Таким образом
H = log2 N. (1.5)
Это - формула Хартли.
Важным при введение какой-либо величины является вопрос о том, что принимать за единицу ее измерения. Очевидно, Н будет равно единице при N = 2. Иначе говоря, в качестве единицы принимается количество информации, связанное с проведением опыта, состоящего в получении одного из двух равновероятных исходов (примером такого опыта может служить бросание монеты при котором возможны два исхода: «орел», «решка»). Такая единица количества информации называется «бит».
Все N исходов рассмотренного выше опыта являются равновероятными и поэтому можно считать, что на «долю» каждого исхода приходится одна N-я часть общей неопределенности опыта: (log2 N)1N. При этом вероятность i-го исхода Рi равняется, очевидно, 1/N.
Таким образом,
Та же формула (1.6) принимается за меру энтропии в случае, когда вероятности различных исходов опытанеравновероятны (т.е. Рi могут быть различны). Формула (1.6) называетсяформулой Шеннона.
В качестве примера определим количество информации, связанное с появлением каждого символа в сообщениях, записанных на русском языке. Будем считать, что русский алфавит состоит из 33 букв и знака «пробел» для разделения слов. По формуле (1.5)
Н = log2 34 ≈ 5 бит.
Однако, в словах русского языка (равно как и в словах других языков) различные буквы встречаются неодинаково часто. Ниже приведена табл. 1.3 вероятностей частоты употребления различных знаков русского алфавита, полученная на основе анализа очень больших по объему текстов.
Воспользуемся для подсчета Н формулой (1.6); Н ≈ 4,72 бит. Полученное значение Н, как и можно было предположить, меньше вычисленного ранее. Величина Н, вычисляемая по формуле (1.5), является максимальным количеством информации, которое могло бы приходиться на один знак.
Таблица 1.3. Частотность букв русского языка
i | Символ | Р(i) | i | Символ | P(i) | i | Символ | Р(i) |
Пробел | 0,175 | 0,028 | Г | 0.012 | ||||
0,090 | М | 0,026 | Ч | 0,012 | ||||
Е | 0,072 | Д | 0,025 | И | 0,010 | |||
Ё | 0,072 | П | 0,023 | X | 0,009 | |||
А | 0,062 | У | 0,021 | Ж | 0,007 | |||
И | 0,062 | Я | 0,018 | Ю | 0,006 | |||
Т | 0,053 | Ы | 0,016 | Ш | 0.006 | |||
Н | 0,053 | З | 0.016 | Ц | 0,004 | |||
С | 0,045 | Ь | 0,014 | Щ | 0,003 | |||
Р | 0,040 | Ъ | 0,014 | Э | 0,003 | |||
В | 0,038 | Б | 0,014 | Ф | 0,002 | |||
Л | 0,035 |
Аналогичные подсчеты Н можно провести и для других языков, например, использующих латинский алфавит - английского, немецкого, французского и др. (26 различных букв и «пробел»). По формуле (1.5) получим
H = log2 27 ≈ 4,76 бит.
Как и в случае русского языка, частота появления тех или иных знаков не одинакова.
Если расположить все буквы данных языков в порядке убывания вероятностей, то получим следующие последовательности:
АНГЛИЙСКИЙ ЯЗЫК: «пробел», E, T, A, O, N, R, …
НЕМЕЦКИЙ ЯЗЫК: «пробел», Е, N, I, S, Т, R, …
ФРАНЦУЗСКИЙ ЯЗЫК: «пробел», Е, S, А, N, I, Т, …
Рассмотрим алфавит, состоящий из двух знаков 0 и 1. Если считать, что со знаками 0 и 1 в двоичном алфавите связаны одинаковые вероятности их появления (Р(0) = Р(1) = 0,5), то количество информации на один знак при двоичном кодировании будет равно
H = 1оg2 2 = 1 бит.
Таким образом, количество информации (в битах), заключенное в двоичном слове, равно числу двоичных знаков в нем.
Дата добавления: 2015-07-30; просмотров: 711;