Необходимое условие устойчивости

 

Характеристическое уравнение системы с помощью теоремы Виета может быть записано в виде

 

D(p) = aopn + a1pn-1 + a2pn-2 + ... + an = ao(p-p1)(p-p2)...(p-pn) = 0,

 

где p1, p2, ..., pn - корни этого уравнения. Если система устойчива, значит все корни левые, то есть вещественные части всех корней

отрицательны, что можно записать какai = -|ai| < 0. Подставим их в уравнение:

 

a0 (p + |a1|) (p + |a2| - j 2) (p + |a2| + j 2) ... = 0.

 

Перемножая комплексно сопряженные выражения, получим:

 

a0 (p + |a1|) ((p + |a2|)2 + ( 2)2) ... = 0.

После раскрытия скобок должно получиться выражение

 

a0 pn + a1 pn-1 + a2 pn-2 + ... + an = 0.

 

Так как в скобках нет ни одного отрицательного числа, то ни один из коэффициентов a0,a1,...,an не будет отрицательным. Поэтому необходимым условием устойчивости САУ является положительность всех коэффициентов характеристического уравнения: a0 > 0, a1 > 0, ... , an > 0. В дальнейшем будем рассматривать только уравнения, где a0 > 0. В противном случае уравнение домножается на -1.

Рассмотренное условие является необходиным, но не достаточным условием. Необходимые и достаточные условия дают алгебраические критерии Рауса и Гурвица.

 








Дата добавления: 2015-07-24; просмотров: 527;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.