Расчет бесконечно длинной балки на упругом основании, загруженной одной силой Р.
Наиболее просто решается задача об изгибе бесконечно длинной балки, нагруженной одной сосредоточенной силой (Рис.2). Помимо непосредственного практического значения решение этой задачи позволит путем последовательных приближений рассчитывать и балки конечной длины.
Рис.2. Расчетная схема балки бесконечной длины.
Начало координат расположим в точке приложения силы Р. Определим постоянные А, В, С и D. Так как вся реакция основания, равная силе Р должна быть конечной величиной, то прогибы балки в точках, бесконечно удаленных от точки приложения силы, должны обращаться в нуль:
(5) |
При бесконечно больших значениях х два вторых слагаемых в правой части формулы (4) обращаются в нуль благодаря множителю , два же первых могут обратиться в нуль лишь при
и
таким образом,
(6) |
Далее, по симметрии нагрузки и реакции основания, касательная к изогнутой оси в точке приложения силы должна идти параллельно оси абсцисс:
Дифференцируя (6), получаем:
Подставляя в это выражение и приравнивая результат нулю, находим:
D — С = 0 и C=D;
таким образом, уравнения будут:
(7) | |
(8) |
Для определения последней постоянной С имеем еще одно уравнение: нам известна величина поперечной силы в начале координат.
Разрезав балку сечением в точке О справа от силы Р и рассматривая правую часть балки, видим, что поперечная сита в этом сечении равна реакции основания, действующей на правую половину балки со знаком минус; так как реакция направлена вверх (для правой половины) и вся реакция основания равна Р, значит, поперечная сила в сечении при х = 0 равна
Но, с другой стороны
(9) |
Таким образом,
(10) |
Вычисляем, пользуясь (8), и :
(11) | |
(12) |
Подставляя (12) в (10) и приравнивая х нулю, получаем:
и
Теперь значения у и ее производных получают вид
Таким образом, напряженное состояние и деформации балки на упругом основании всецело определяются нагрузкой и коэффициентом , зависящим от соотношения жесткостей балки и упругого основания.
Лекция № 32. Энергетические методы расчета деформаций.
Дата добавления: 2015-07-18; просмотров: 568;