Закон складання швидкостей

Розглянемо деякий процес, який відбувається у точці А, нерухомій відносно штрихованої системи координат. Позначимо тривалість деякого процесу за годинниками не штрихованої системи й штрихованої системи відповідно через t і tо. Очевидно, що

; і t = t2 – t1. (5.2.1)

 

Для знаходження залежності tо від t скористаємось перетвореннями координат Лоренца (5.1.7)

 

; . (5.2.2)

 

Віднімемо рівності (5.2.2), одержимо t0:

 

, але t2 - t1 =t , а x2 – x1 = ut,

тому

= . (5.2.3)

 

З рівності (5.2.3) знайдемо t

 

. (5.2.4)

 

Висновок.

Якщо v»c, то t0<<t. Час в різних системах відліку протікає не однаково. Одна і та ж подія має різну тривалість у різних системах відліку.

 

Знайдемо довжину рухомого предмета в різних системах відліку. Нехай стрижень, який має довжину l0 в штрихованій системі координат, рухається разом з цією системою координат з швидкістю u відносно не штрихованої системи координат (рис. 5.2). (Стрижень перебуває у спокої відносно штрихованої системи координат).

Як видно з рисунка, довжина стрижня у штриховій системі координат дорівнює:

 

. (5.2.5)

 

Рис. 5.2

 

Координати запишемо з перетворень Лоренца для моменту часу t (в один і той же час)

 

.

 

Звідки

. (5.2.6)

 








Дата добавления: 2015-08-26; просмотров: 576;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.