Получение и свойства полимерных материалов
Полимерные материалы и изделия
Еще в древнейшие времена были известны такие природные полимерные материалы, как битумы (асфальты). За 700 лет до н. э. в Вавилоне природный полимер-битум применяли как цементирующий и водостойкий материал при строительстве канала под рекой Евфрат. Впоследствии эти материалы получили дальнейшее развитие только со второй половины XIX века.
Именно в этот период проводят работы, посвященные химической переработке таких природных материалов, как целлюлоза, каучук и белок.
В начале XX века были искусственно синтезированы новые высокомолекулярные вещества уже не на основе существующих природных полимеров, а на основе простых по химическому составу веществ.
Громадное значение при этом имели работы основателя теории строения органических веществ русского химика Бутлерова, в частности, синтез изобутилена и исследования процесса его полимеризации.
Начиная с 30-х годов прошлого века, большое значение приобрели полимеризационные пластики (полистирол, поливинилхлорид, полиметилмет-акрилат). Появились новые виды поликонденсационных полимеров: полиамидные, полиуретановые, кремнийорганические.
Получение и свойства полимерных материалов
В настоящее время высокомолекулярные смолы - основу всех полимерных материалов - получают химическим путем в результате полимеризации простых молекул или поликонденсацией разных органических соединений.
Процесс полимеризацииосуществляется без выделения побочных продуктов путем разрыва двойных, тройных химических связей и соединения молекул в длинные линейные или разветвленные структуры.
Например, этилен (СН2=СН2)n при полимеризации образует линейный полиэтилен (-СН2-СН2-)n. Для повышения скорости реакции используют нагревание или давление, а также ультрафиолетовые лучи, катализаторы, инициаторы.
К полимеризационным полимерам, которые нашли широкое применение в строительстве, относятся: поливинилхлорид, полистирол, полиизобутилен, полиэтилен высокого и низкого давления.
При поликонденсации наряду с образующимся полимером выделяются такие побочные продукты, как газ или вода.
В результате реакции поликонденсации, в которой участвуют несколько веществ, образуются сложные по составу полимеры с линейным (полиамиды, поликарбонаты) или пространственным строением (фенолоформальдегидные, эпоксидные).
В зависимости от применяемого исходного сырья полимерные материалы подразделяют на искусственные и синтетические.
Искусственные получают путем химической модификации природных высокомолекулярных соединений (целлюлозы), синтетические – из различных мономеров (синтез).
Сырьем для получения строительных материалов служат сложные пластические массы, которые состоят из смеси нескольких компонентов: связующего полимера, предназначенного для обеспечения пластичности смеси в нагретом состоянии и твердости в охлажденном (синтетические смолы, каучуки, целлюлоза); наполнителя (тонкомолотый асбест, песок, отходы резины) для снижения стоимости, повышения трещиностойкости, теплостойкости, твердости; пластификатора – для повышения эластичности готового изделия; отвердителя – для ускорения набора прочности; пигмента – для придания цвета.
Свойства полимерных материалов и изделий, как и любых других, зависят от их состава и структуры.
Микроструктура определяется в большей степени самим веществом, а макроструктура – способом получения.
Изделия из пластических масс получают несколькими методами: прямого прессованияпропитанной горячими смолами основы (ткани, древесного шпона, бумаги) в несколько слоев (листовые пластики) или полимерного пресс-порошка (плитки для облицовки полов);
литьевого прессованиявязкотекучей расплавленной смеси (плиточный и листовой материал с объемным рисунком для отделки стен и потолка);
экструзииили продавливания пластичной массы через насадку определенного размера и формы (плинтусы, поручни для лестниц, герметизирующие и уплотняющие прокладки для окон и дверей, рулонное полотно для отделки полов, стен и т.д.);
промазкиверхней поверхности полотна основы (бумаги, ткани, стеклоткани) пастообразной полимерной массой с последующим глубоким нанесением рельефного рисунка;
вальцево-каландровымметодом,который состоит из тщательного перемешивания компонентов на вальцах, последующей прокатки пластичной массы между двумя вращающимися в разные стороны валками с зазором, определяющим толщину будущего рулонного изделия, и нанесения объемного или плоского рисунка на поверхность.
Последними двумя способами получают рулонные материалы для отделки вертикальных и горизонтальных поверхностей в помещениях различного назначения.
Теплоизоляционныеполимерные материалыполучают несколькими способами.
Первый – путем предварительного вспениванияпластичной полимерной массы за счет интенсивного механического перемешивания в сочетании с действием перегретого пара (110 °С) или введения пенообразующих добавок, последующей заливки смеси в форму, быстрого охлаждения ее для фиксации пористой структуры и резки по размерам (пенопласты).
Второй – предусматривает использование в составе полимерной массы газообразующих компонентов, заполнение формы, подогрев для улучшения газообразования, быстрое охлаждение для фиксации структуры и при необходимости – резка по размерам (поропласты).
Третий – за счет склеивания по контактам гофрированных листов бумаги, ткани или древесного шпона, пропитанных горячей смолой (сотопласты).
Четвертый – снижение средней плотности за счет введения в поли-мерную массу высокопористых заполнителей (вспученный перлит, вермикулит) или волокнистых компонентов.
Широкое распространение полимерных материалов (пластмасс) в строительстве основано на их положительных свойствах: низкой истинной плотности, высокой водостойкости, гидрофобности. Это материалы, которые успешно работают в условиях действия истирающих нагрузок.
Механическая прочность хорошо сочетается в них с пластичностью и упругостью. Высокая коррозионная стойкость обеспечила их применение в качестве антикоррозионных материалов для защиты бетонных и металлических конструкций.
Имея неисчерпаемую цветовую палитру, пластмассы могут с успехом имитировать такие материалы, как древесина, природный камень, черные и цветные металлы. Важным положительным свойством пластмасс является хорошая технологическая обрабатываемость. Их можно легко резать, сваривать, шлифовать и полировать.
Способность пластмасс соединяться с другими органическими и неорганическими материалами позволяет создавать на их основе новые прогрессивные композиционные материалы и конструкции различного назначения.
Пластмассы имеют также ряд недостатков.
Большинство из них обладают высоким коэффициентом термического расширения, повышенной ползучестью, не огнестойки.
Под воздействием атмосферных факторов и особенно солнечных лучей полимеры стареют. Этот процесс сопровождается снижением прочности и эластичности. Материалы имеют сравнительно невысокую твердость и теплостойкость.
По отношению к нагреванию полимеры подразделяют на термопластичные (полиэтилен, полистирол, поливинилхлорид) и термореактивные (на основе эпоксидных и полиэфирных смол).
Для термопластичныхпереход из пластичного состояния (при нагревании) в твердое (при охлаждении) не сопровождается изменением состава и структуры изделия и, как следствие, физико-механических свойств.
Нагрев же термореактивных полимеров приводит к структурным изменениям на микроуровне, что оказывает значительное влияние на их свойства, они становятся жесткими и хрупкими.
Дата добавления: 2015-06-22; просмотров: 1760;