Законы сохранения импульса и энергии
Для вывода закона сохранения импульса рассмотрим некоторые понятия. Совокупность материальных точек (тел), рассматриваемых как единое целое, называется механической системой. Силы взаимодействия между материальными точками механической системы называются внутренними. Силы, с которыми на материальные точки системы действуют внешние тела, называются внешними. Механическая система тел, на которую не действуют внешние силы, называется замкнутой (или изолированной).
Для замкнутой системы в случае отсутствия внешних сил получим
= =0, т.е.
= =const. (3.14)
Это выражение и является законом сохранения импульса: импульс замкнутой системы сохраняется, т.е. не изменяется с течением времени.
Закон сохранения импульса представляет собой один из фундаментальных законов природы и проявляется в целом ряде явлений. В частности, он лежит в основе реактивного движения, проявляется в процессе соударения тел.
Для вывода закона сохранения энергии рассмотрим уравнения
m1 = + + ,
m1 = + + ,
mn = + + .
Здесь , , - равнодействующие внутренних консервативных сил; , , - равнодействующие внешних консервативных сил; , , - внешние неконсервативные силы.
Двигаясь под действием сил, точки системы за интервал времени dt совершают перемещения, соответственно равные , , ..., . Умножим каждое из уравнений скалярно на соответствующее перемещение и, учитывая, что = dt, получим:
m1 ,
m2 ,
mn .
Сложив эти уравнения, получим
– = . (3.15)
Первый член левой части равенства (3.15)
= ,
где dWк – есть приращение кинетической энергии системы. Второй член равен элементарной работе внутренних и внешних консервативных сил, взятой со знаком минус, т.е. равен элементарному приращению потенциальной энергии dWp системы.
Правая часть равенства (3.15) определяет работу внешних неконсервативных сил, действующих на систему. Таким образом, имеем
. (3.16)
При переходе системы из состояния 1 в какое-либо состояние 2
,
т.е. изменение полной механической энергии системы при переходе из одного состояния в другое равно работе, совершенной при этом внешними неконсервативными силами. Если внешние неконсервативные силы отсутствуют, то из (3.15) следует, что
, откуда
const, (3.17)
т.е. полная механическая энергия системы сохраняется постоянной. Выражение (3.17) представляет собой закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т.е. не изменяется со временем.
Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами. Закон сохранения механической энергии можно сформулировать так: в консервативных системах полная механическая энергия сохраняется.
В диссипативных системах механическая энергия постепенно уменьшается за счет преобразования в другие (немеханические) формы энергии.
Из этого следует всеобщий закон сохранения энергии, сформулированный М.В. Ломоносовым: энергия ни откуда не возникает и никуда не исчезает – она переходит из одного вида в другой: из механической в тепловую, электрическую, световую; из тепловой в механическую, электрическую, световую и т.д., или передается от одного тела к другому, но общее ее количество остается постоянным.
Дата добавления: 2015-06-17; просмотров: 677;