АРХИТЕКТУРНЫЕ ОБМЕРЫ 2 страница
Отвес — самый простой, но и самый необходимый из всех инструментов, применяемых при обмерах, легко может быть сделан на месте работы: камень, привязанный к шнуру, является достаточно хорошим отвесом. Важно, чтобы шнурок отвеса был в одно и то же время и крепким, и тонким. Для этой цели — пригодны рыболовные лески, а при работе с тяжелыми отвесами — тонкая проволока (лучше всего мягкая медная) (Рис. 8).
Для проведения горизонтальных линий можно также применять плотничный ватерпас с отвесом, устанавливая его на рейке, по которой проводится линия (Рис. 9).
Горизонтальные линии на стене здания можно провести, имея под руками только такой инструмент как отвес. При помощи него на стене проводят вертикальную линию, а затем перпендикулярную к ней горизонтальную. Для проверки перпендикулярности линий на них откладываются катеты так называемого «египетского» треугольника, кратные трем и четырем, и измеряется полученная гипотенуза, которая должна быть равной пяти единицам. На рис. 10 показано проведение нулевой линии на стене здания с помощью отвеса и «египетского» треугольника.
Рис. 10. «Египетский» треугольник |
инструментов, но измеряемое здание стоит на
берегу моря, озера или большой реки и может
быть видимо на фоне водного горизонта, можно воспользоваться линией горизонта и по ней воспользоваться линией горизонта и по ней
нанести на стены здания отдельные
точки, находящиеся на одной горизонтальной линии.
Первый из этих упрощенных способов нанесения горизонтальной линии наиболее пригоден для больших, гладких и нерасчлененных стен; второй способ дает лучшие результаты в том случае, если здание прорезано рядом сквозных проемов, через которые можно видеть горизонт.
Весьма удобно проводить на зданиях горизонтальные линии при помощи нивелира или теодолита или даже пантометра, но следует указать, что во многих случаях вместо этих сложных и дорогостоящих инструментов можно применять обыкновенный уровень со зрительной трубой или диоптрами, прикрепленными к его оправе. Для этого можно взять зрительную трубу простейшего устройства с маленьким круглым отверстием вместо окуляра и объективом из простого стекла с нацарапанными на нем двумя пересекающимися под прямым углом линиями. Такая труба достаточно удобна для тех сравнительно небольших расстояний, с которыми приходится иметь дело при архитектурных обмерах, и легко может быть сделана своими средствами. Важно только, чтобы оптическая ось трубы, установленной на оправу уровня, была строго параллельна тому ее краю, который принимается за горизонтальный. При работе с этим прибором особое внимание нужно обращать на то, чтобы поверхность, на которую он установлен для работы, была бы действительно горизонтальной, и воздушный пузырек уровня при вращении последнего вокруг вертикальной оси оставался бы неподвижным. Даже незначительные отклонения уровня от горизонтали, не влияющие на точность работы при употреблении его с рейкой, в этом случае могут быть причиной крупных ошибок.
Проводить нулевые линии на стенах следует чем-либо, оставляющим заметные, но легко стирающиеся следы. Удобны для этой цели мел, цветные мелки и карандаши, а при шероховатых поверхностях — уголь. Нередко, в особенности при работе внутри зданий, имеющих богатую внутреннюю архитектурную обработку, приходится вместо проведения нулевых линий отмечать на углах помещений, проемов, пилястр и пр. ряд «нулевых точек». Лишь там, где это необходимо по ходу работы, можно провести линию или, если архитектурная обработка поверхности не позволяет это сделать, натянуть шнурок между двумя точками.
При сильном ветре, сносящем в сторону даже тяжелые отвесы, можно вместо них вертикально устанавливать прямую, хорошо выверенную рейку, правильность положения которой проверяется уровнем с воздушным пузырьком. Наконец, в ряде случаев можно применять оптический отвес, т.е. вертикально установленную зрительную трубу.
При измерениях больших высот применяется шест, к концу которого прикрепляется конец рулетки. Наконечник такого шеста лучше всего делать в виде плоского двухгранного клина, но следует иметь и наконечник с поперечной планкой или с держателем для мела, угля или карандаша.
Очень удобны для высотных обмеров шесты, составляемые из отдельных частей, вставляемых одна в другую наподобие составных удилищ, которые также находят применение при обмерах.
Особенно большие, недоступные для непосредственного измерения высоты можно измерять при помощи угломерного инструмента с вертикальным кругом — теодолита, пантометра, астролябии или даже эклиметра, дающего углы на-
Рис.11. Стереофотограмметри-ческая рабочая станция |
клона. Отсутствие зрительной трубы у эклиметров не может считаться серьезной помехой для достижения точности: при архитектурных обмерах приходится иметь дело с гораздо меньшими расстояниями, чем при геодезических съемках. Большое значение имеет точность отсчета углов, поэтому даже самые простые угломерные инструменты следует снабжать верньерами[2]. Другие инструменты, применяемые при обмерах (компас, служащий для определения ориентации зданий по странам света, шнурки и проволока для причалок и горизонтальных линий и пр.), не требуют пояснений.
Используя опыт осуществления обмерных работ классическими методами, были разработаны новые инструменты и технологии, позволяющие проводить более точные обмеры на высоком уровне в гораздо более короткие сроки.
Геодезические и фотограмметрические методы в проведении архитектурных обмеров применялись давно и многие из них подробно описаны в специальной литературе. Применение новой аппаратуры, несмотря на ее высокую стоимость, было особенно эффективно на труднодоступных и сложных объектах; при необходимости фиксации сооружений, находящихся в аварийном и руинированном состоянии; для быстрой фиксации в экстренных случаях и так далее. Однако применение сложной аппаратуры не означало полного отказа от классического метода обмеров вручную, так как в ряде случаев его применение более целесообразно.
Ситуация принципиально изменилась с появлением лазерной безотражательной техники и современных компьютеров. Сравнительно недавно ведущие мировые производители геодезического оборудования стали выпускать лазер-
ные безотражательные электронные тахеометры (Рис. 11). Встроенная электронная память и микропроцессор позволяют свести процесс измерений и определения положения точки в пространстве к нажатию одной кнопки. Для данной измерительной системы результаты угловых и линейных измерений с помощью программного обеспечения преобразуются в пространственные координаты. Таким образом, стало возможным эффективно выполнять обмеры архитектурных объектов как в доступных, так и в недоступных местах с точностью 0,5—1 см.
Данный метод основан на высокоскоростном получении координат точек по поверхности измеряемого объекта с помощью лазера. У лучших моделей скорость получения координат может достигать тысячи в секунду, плотность точек до 1 мм между ними, точность определения координат до 3 мм. Дальность от объекта до измерительного прибора может быть несколько сотен метров. В результате измерений получается поле точек по поверхности объекта, расположенных в пространстве с очень большой плотностью и высокой точностью определения их координат. В компьютере по данному полю точек может быть натянута «сетка», которая изобразит поверхность объекта.
Поскольку применение технически сложной аппаратуры предполагает специальное обучение пользователей, студентам целесообразно получить знание классических методов архитектурных обмеров.
ПРОВЕДЕНИЕ ОБМЕРНЫХ РАБОТ
Способы обмерных работ определяются после визуального осмотра объекта с учетом особенностей его архитектурной формы и доступности измеряемых элементов. Использование простых измерительных инструментов предполагает применение основных классических методов обмеров: триангуляции и прямоугольных, или картезианских, координат. Эти методы подробно описаны в специальной литературе, а их суть сводится к следующим положениям: триангуляция основывается на системе взаимосвязанных треугольников — простейших геометрических фигур, у которых каждая вершина может быть точно определена засечками промеренных сторон из двух других вершин (Рис. 12 А, Б); метод прямоугольных картезианских (ортогональных) координат основан на фиксации каждой точки объекта относительно взаимно перпендикулярных осей. (Рис. 12 В) Такими «осями» могут быть выверенные по отвесу (вертикальные) и по уровню (горизонтальные) прямые. (Рис. 13) Опыт показывает, что сочетая эти два метода, практически можно обмерять объекты любой по сложности конфигурации. Однако при обмерах зданий больших размеров, поверхностей с неровными и сложными очертаниями, а также территорий, эффективнее использовать геодезические приборы — даже самые простые — теодолиты и нивелиры. (Рис. 14)
Собственно обмерные работы включают в себя: выполнение подготовительных черновых зарисовок, которые называются кроки[3]; снятие натуральных раз-
Рис.14. Геодезическая съемка
а — круговая геодезическая съемка, позволяющая промерить углы и детали фасадов; б — съемка, при которой промер углов заменен промером треугольников; последние можно построить с помощью стальной рулетки; в — использование различных методов съемки. Определение вершин пересекающихся линий. Точки могут быть определены промером их из разных положений, начиная от С, промеряя длины сторон (треугольников); от D, с помощью полярных координат (углы и размеры между местами пересечений); от Е, опуская перпендикуляры от разных точек, избираемых на линии геодезического промера |
меров с нанесением их на кроки; камеральное выполнение обмерных чертежей и окончательное оформление выполненной работы.
Кроки представляют собой чертежи, выполненные «от руки», либо линейные рисунки. От тщательности и точности черновых зарисовок во многом зависит качество обмера. Кроки выполняются на плотной бумаге формата 30 х 40 см только с одной стороны. Карандашная линия должна быть четкой и не двоиться. Оптимально — выполнение ортогональных схем планов, разрезов, фасадов всего сооружения или его частей с возможно точной передачей пропорций и всех особенностей изображаемого объекта. Следует отметить, что при необходимости для получения общего впечатления о сооружении можно произвести схематические обмеры здания в целом (общей ширины и длины сооружения) или его отдельных частей. Такие обмеры делаются на основе глазомерной съемки и нескольких основных промеров здания. Схематические обмеры помогают более точно выполнить кроки и дают представление о состоянии здания (рис. 15).
В процессе дальнейшей работы на кроки наносятся все получаемые размеры. Нанесение на кроки основных размеров здания и его частей обычно производится по результатам схематических обмеров на черновых зарисовках, правильно передающих пропорции изображаемого. Особое внимание нужно обращать на простановку размеров. Размерные и выносные линии, а также соответствующие
Рис. 15. Кроки
МАСШТАБ 1-Ю 1________ I------------ 1-------------------------- 1 |
Рис. 16. Москва. Церковь Зачатья Анны «что в углу». Южный фасад. Кроки. Обмер северного портала |
им цифры, должны быть четкими и ясно указывать, к каким частям здания они относятся. При обмерах крупных сооружений и зданий сложной конфигурации общие схемы проекций выполняются на кроки отдельно от изображения фрагментов и деталей. Рисунки последних делаются в более крупном масштабе, т.к. требуют подробных измерений с нанесением большого количества размеров. Здесь размерные линии часто образуют сложное переплетение, и поэтому лучше не изображать их на рисунке, а делать цифровые или буквенные обозначения отдельных точек и выносить экспликацию измерений на поля чертежа или за пределы рисунка. Выполненные в крупном масштабе кроки фрагментов и деталей идентифицируются с их расположением на общих схемах при помощи соответствующих обозначений. На каждом листе кроки пишется наименование объекта, его адрес, дата проведения работы, фамилии исполнителей, руководителей и название учебного заведения. Все кроки нумеруются и соотносятся с чертежами. Кроки — основной документ натурной (полевой) стадии работ, они являются важной составляющей всего комплекта фиксационной документации по архитектурному сооружению.
Обмерные чертежи основных проекций здания, т.е. планов, фасадов и разрезов, обычно выполняются в масштабе 1:50. Этим определяется необходимая точность обмера — до 0,5 см, что дает в масштабе чертежа 0,1 мм — предельно мелкую, ощутимую на глаз величину. Для деталей здания, если они вычерчиваются в крупном масштабе, обмер производится с точностью до 1 мм.
Обмер обычно начинают с отбивки нулевой линии по всему периметру, по всем этажам или ярусам здания отдельно. Все эти нулевые линии должны быть надежно связаны между собой системой отвесов, которые рекомендуется привязывать к выверенным точкам. Для того чтобы произведенные обмерщрставались полноценными, независимо от давности их проведения, и в любой момент могли быть использованы для реставрации и реконструкции здания, следует увязывать нулевые линии с абсолютными отметками от единых государственных реперов[4], указывающих положение данной местности относительно уровня моря. Отбивается нулевая линия при помощи водяного уровня, а при больших размерах здания — нивелиром. Отбивка нулевой линии позволяет получить как бы горизонтальный срез здания, его план, который может быть обмерен сравнительно простыми средствами. (Рис. 16)
ОБМЕРЫ ПЛАНОВ
Обмеры планов наименее трудоемки в исполнении, так как для них, как правило, не нужны подмости и лестницы. Но и здесь есть свои трудности, в особенности при точных обмерах планов неправильных или сложных по конфигурации. При простых обмерах, когда линии и углы, кажущиеся прямыми, принимаются за таковые, важно лишь обмерить длинные прямые линии с рядом промежуточных точек на них (например, стена с проемами), причем измерять следует от нулевого деления рулетки до конца — «нарастающим итогом», а не по частям, так как в первом случае неточность инструмента может быть причиной лишь одной ошибки в конечном отсчете, а во втором эта ошибка может быть суммой таких же ошибок, допущенных при каждом отдельном измерении. (Рис. 17)
Там, где требуется большая точность обмеров, производят проверку углов путем измерения диагоналей помещений или их частей. Наконец, при точных обмерах горизонтальные линии, на уровне которых обмеряются планы, отбиваются по уровню, причем, если делается только один план, находящиеся выше или ниже его уровня проемы и прочие детали фиксируются на нем же. При обмерах углы детали следует спроектировать на «нулевую» горизонтальную линию и отметить их крестиками (пересечениями горизонтальной линии с отвесами, опускаемыми из углов проемов). Повторяющиеся детали планов (проемы, пилястры и пр.) обмеряются все в отдельности и производится проверка углов и прямизны линий. (Рис. 18, 19, 20)
Проверка прямизны линий осуществляется двумя способами. Во-первых, можно натянуть шнур или тесьму рулетки вдоль проверяемой стены и в не-
Рис. 18. Обмеры внешнего контура постройки 30 |
Рис. 20. Совмещение внешних и внутренних промеров |
Рис. 21. Проверка прямизны стены в плане |
скольких местах измерить расстояние между «условной прямой» стены и «безусловной прямой» тесьмы рулетки. Эти измерения лучше всего вести от каких-либо имеющихся на этой стене реальных точек — углов проемов, пилястр и т.п., положение которых зафиксировано независимо от прямизны стены. (Рис. 21)
Тесьму рулетки следует натягивать возможно ближе к стене, так как в этом случае можно ставить меру, которой измеряется расстояние от стены до тесьмы, перпендикулярно последней, на глаз. Если же рельеф стены заставляет держать тесьму на большом расстоянии от нее, то нужно проверять перпендикулярность меры и тесьмы с помощью угольника.
Другой способ проверки прямизны линий вытекает из всей триангуляционной системы обмеров планов, когда, помимо обмеров вдоль стен, все точки связывают между собой промерами, разбивающими весь план на треугольники.
В простейшем случае сначала измеряют расстояние между двумя точками (А и Б) внутри помещения, принимают эту величину за основу (базис) всего обмера и измеряют расстояния от обоих его концов до любой из точек плана. Таким образом, положение любой из точек плана может быть получено на чертеже при помощи засечек из обоих концов базиса радиусами, равными расстояниям от точки до каждого из этих концов. (Рис. 22)
Чем больше таких точек берется на контуре плана, тем точнее бывают обмеры, но в то же время нужно следить за тем, чтобы линии, соединяющие каждую из точек с концами базисов, не пересекались между собой под очень острыми или очень тупыми углами, так как в этих случаях трудно уловить на чертеже ту точку, в которой пересекаются определяющие ее засечки.
Лучше всего, когда эти линии образуют прямой или близкий к прямому угол, но допустимы и углы в пределах от 30 до 150°.
Поэтому в большинстве случаев приходится обмеры даже несложных планов вести от нескольких базисов. Так, при обмерах плана открытого четырехуголь-
Рис. 22. Обмер плана помещения по точкам засечками из двух полюсов |
Рис. 23. Последовательность приемов при обмерах помещения засечками |
Работа несколько упрощается, если от первого базиса условной прямой АБ удается обмерить обе противолежащие стены (ВГ и ДЕ). В том случае, если одна из стен близка к базису, нужно базис разбить на небольшие части (1—2; 2—3; 3—4 и т.д.) и от концов каждой из них измерить засечками положение каждой характерной точки стены. (Рис. 24).
А 1 7> А 5"., ___________________ 9... |
Рис. 24. Проверка прямизны стены в плане с помощью обмеров засечками от причалки |
Рис. 25. Обмер плана помещения засечками при одной стене, принятой за базис |
В планах, ограниченных кривыми линиями, где промеры вдоль стен невозможны и положение всех точек в плане фиксируется обмерами по засечкам, для контроля следует делать промеры между отдельными точками.
Возможен и иной — полярный — способ обмеров плана по точкам, когда расстояния
Рис. 26. Обмер плана помещения полярным способом |
Полярный способ дает возможность объединить в одно целое обмеры засечками с обмерами вдоль стен, но во избежание ошибок необходимо делать и контрольные измерения между точками, более или менее удаленными одна от другой (1—5).
Рис. 27. Обмер недоступной части плана помещения с помощью угломерного инструмента |
Геодезические приборы нового поколения позволяют достигать высокой точности, достаточной для архитектурных обмеров.
Следует отметить один случай, когда угломерный инструмент может оказаться необходимым, — обмер плана верхнего этажа здания с частично разрушенным перекрытием под ним. Здесь применение угломерного инструмента и съемка недоступных частей плана способом засечек могут до известной степени решить задачу. (Рис. 27)
При не очень больших расстояниях от недоступных до базиса обмера точек можно использовать лазерную рулетку.
Рис. 29. Обмер засечками плана здания с внутренними столбами |
Рис. 28. Обмер плана помещения, ограниченного кривыми линиями, засечками от двух точек А и Б |
Значительно сложнее проводить обмеры планов помещений, имеющих внутренние столбы, или в зданиях, состоящих из ряда связанных между собой помещений. В первом случае начинают с того, что измеряют расстояния (прямые и диагональные) между столбами и полученную фигуру принимают за то, что в геодезии называется базисной сеткой. От каждой ее стороны, как от базиса, обмеряются противолежащие части стен; от последних, также принимаемых в этом случае за базисы, обмеряются внешние углы столбов, которые в свою очередь помогают обмерить части стен, недоступные для обмеров от углов базисной сетки. Большая или меньшая сложность плана влияет лишь на трудоемкость работы, сам же принцип обмеров остается неизменным: каждая пара точек, положение которых удается зафиксировать от какого-либо базиса, рассматривается как новый базис, служащий для обмеров от него других точек, недоступных от первого базиса. (Рис. 29)
При обмерах плана нескольких помещений, связанных в одно целое, работа может вестись по-разному, в зависимости от особенностей плана.
При наличии центрального помещения и связанных с ним широкими проемами боковых помещений следует сначала обмерить центральное, а затем, приняв ширину проемов в его стенах за базис, обмерить от каждого базиса прилежащее к нему боковое помещение. В большинстве случаев приходится предварительно обмерять планы самих проемов, измеряя их стороны и диагонали, а затем
уже от их внешних ширин обмерять примыкающие к ним боковые помещения. (Рис. 30)
При наличии ряда помещений, связанных между собой небольшими проемами, ход работы определяется размещением последних. При анфиладном размещении помещений с проемами, расположенными на одной оси, следует провести через них во всю длину анфилады прямую линию, которую можно назвать, как в геодезии, магистралью. Отдельные части этой магистрали в пределах каждого помещения принимаются за базисы (АБ, ВГ, ДЕ), от которых и производится обмер. (Рис. 31)
Рис. 30. Обмер засечками плана здания Рис. 31. Обмер засечками планов со средним и боковым помещениями, трех, связанных между собой поме- связанными между собой широкими щений от одной магистрали проемами |
Если соседние помещения отделены одно от другого глухими стенами без проемов, тогда независимые друг от друга обмеры каждого из них связывают с общей для них линией или геометрической фигурой, находящейся вне здания. И здесь ход работы также определяется расположением проемов.
Если проемы в соседних помещениях выходят на один и тот же фасад, то обмеры этих помещений можно связать в одно целое при помощи причалки, установленной перед ними. Причалка — бечевка или проволока, натягиваемая горизонтально (при большой длине — с промежуточными опорами) на одном уровне с нулевой линией, на высоте которой обмеряется план. Перед каждом из помещений на причалке берутся две (1,2) точки, и от них измеряются расстояния до двух других точек (а, б) внутри, положение которых фиксируется внутренним обмером. (Рис 33)
Измерения, связывающие между собой эти точки, должны образовывать неизменяемые фигуры, т.е. треугольники. Этого можно достичь, измеряя засечками через проемы расстояния от каждой из внешних точек (3, 4) до двух внутренних (в, г).
Точки на причалках (1, 2, 3, 4) нужно отмечать цветными фиксаторами.
Если проемы в соседних помещениях выходят на смежные, сходящиеся под углом, или на противоположные фасады, то внутренние обмеры каждого из этих помещений следует связать указанным выше способом с двумя точками на причалке, находящейся против каждого фасада, и точно измерить углы между причалками (А, В). (Рис. 34)
Рис. 33. Привязка к причалке пла- Рис. 32. Обмер засечками планов двух нов двух смежных, не связанных смежных помещений, связанных между между собою помещений с проема- собой узким проемом ми, выходящими на один фасад |
Дата добавления: 2015-06-17; просмотров: 5209;