Адсорбция

 

Выделение некоторых классов соединений, присутствующих в нефтях и нефтепродуктах, осуществляется с большей избиратель­ностью на адсорбентах, чем с помощью селективных растворите­лей. Структура твердых адсорбентов позволяет локализовать и ориентировать на поверхности более интенсивные силовые поля, что возможно в растворах с полярными растворителями.

Алкены, например, несколько лучше растворяются в селектив­ных растворителях, чем алканы с той же молекулярной массой, что создает принципиальную возможность их разделения экстракцией. Однако растворимость углеводородов в полярных раст­ворителях снижается в гомологических рядах с увеличением молекулярной массы. Поэтому в смесях широкого фракционного состава растворимости алкенов и алканов взаимно перекрываются, и разделить эти соединения экстракцией практически невозможно. Использование же адсорбционного метода позволяет решить эту задачу.

Для разделения нефтяных фракций на группы соединений в качестве адсорбентов используются силикагель, активная окись алюминия, активные угли.

Силикагели — неорганические высокомолекулярные соединения переменного состава, молекулы которых содержат кремнекислородный каркас с рядом гидроксильных групп. Выпускаются си­ликагели различных марок. Первая буква в марке обозначает форму и размер зерен, третья — преобладающий размер пор, на­пример: КСМ — крупнозернистый силикагель мелкопористый. Кро­ме того, выпускаются мелкопористые силикагели ШСМ и МСМ, а также крупнопористые — КСК, ШСК, МСК. Выбор марки силикагеля зависит от размера молекул адсорбируемых компонентов. Например, для разделения и анализа керосиновых и масляных фракций используются крупнопористые силикагели, для осушки углеводородов — мелкопористые.

Адсорбируемость на полярных адсорбентах (силикагеле, γ-Al2O3 и др.) тем выше, чем больше дипольный момент или диэлектриче­ская постоянная вещества. Активные центры поверхности силикагеля специфически взаимодействуют с гетероатомными компо­нентами нефтяных фракций, а также с аренами, которые сорбиру­ются значительно лучше, чем алканы и циклоалканы. Адсорбцией на силикагеле можно также разделять моно-, би- и трициклические арены.

Окись алюминия в γ-форме, получающаяся при нагревании гид­роокиси и солей алюминия до 600–900°С, селективно сорбирует алкены, что позволяет отделять их от алканов.

Активные угли как неполярные адсорбенты используют глав­ным образом для анализа газовых смесей, а также для более тон­ких разделений, например выделения алкано-циклоалканов из мас­ляных фракций. Адсорбируемость на неполярных адсорбентах, неcпецифически взаимодействующих с разделяемыми компонентами, тем выше, чем больше поляризуемость соединений.

Однако рассмотренные выше адсорбенты не обладают упоря­доченной кристаллической структурой и характеризуются неодно­родной пористостью. Распределение пор по диаметрам у этих ад­сорбентов может быть как узким (2–5 мм), так и очень широким, как, например, у активных углей (от 2 до нескольких сот наномет­ров). Поры таких адсорбентов доступны для веществ, молекулы которых значительно различаются по объемам и форме.

В то же время существует группа адсорбентов, называемых цеолитами, которые имеют однородные поры и не способны адсорбировать молекулы, размер которых больше диаметра пор. Исходя из этих свойств, цеолиты часто называют молекулярными ситами. Название же «цеолит», в переводе с греческого означающее «кипящий камень», было дано еще в XVIII в. в связи со спо­собностью природных цеолитов вспучиваться при нагревании в результате выделения воды из кристаллогидрата. Избирательная адсорбция некоторых веществ с критическим размером молекул не более 0,5 нм была установлена в 1925 г. для одного из природ­ных цеолитов — шабазита. В 1948 г. были получены первые синте­тические цеолиты.

Цеолиты являются кристаллогидратами алюмосиликатов, име­ющими следующий состав: M2/nO*Al2O3*xSiO2*yH2O, где n — ва­лентность катиона, х ≥ 2. В качестве катионов в состав цеолитов входят элементы I и II групп (в частности, Na, К, Mg, Ca, Sr, Ba). Промышленностью выпускаются цеолиты различных структурных типов — А (при значении х в общей структурной формуле цеоли­тов, равном 2), X (х = 2,4 – 2,8) и Y (х = 5).

Каркасная структура цеолита образована тетраэдрами SiO4 и AlO4, соединяющимися общими ионами кислорода в трехмерную решетку. Замещение Si на А13+ приводит к появлению избыточного отрицательного заряда, который нейтрализуется катионом щелоч­ного или щелочноземельного металла, расположенным в пустотах структуры. Цеолиты имеют большие и малые полости почти сфери­ческой формы с диаметром соответственно 1,19 и 0,66 нм. Полости соединяются узкими каналами — «окнами», размер которых и определяет молекулярно-ситовые свойства цеолитов. Эффектив­ный диаметр окон зависит от типа цеолита и природы ка­тиона.

В соответствии с классификацией цеолитов, принятой в СНГ, указывается катион, преимущественно входящий в решетку цео­лита, и тип кристаллической решетки. В марках США и ряда дру­гих зарубежных стран указывается диаметр входных окон и тип решетки. Данные различных исследователей об эффективном диа­метре окон цеолитов типа X существенно расходятся.

Ниже приводится эффективный диаметр окон цеолитов различ­ных марок:

СНГ США d, нм
КА ЗА 0,3
NaA 0,4
СаА 0,5
СаХ 10Х 0,8
NaX 13Х 0,9

 

Цеолит может адсорбировать только те молекулы, критический диаметр (диаметр наибольшего круга, описываемого в плоскости, перпендикулярной длине молекулы) которых меньше эффективного диаметра окон. Значения критических диаметров молекул неко­торых углеводородов следующие (в нм): метан — 0,40; алканы нормального строения С3—С14 — 0,49; бензол — 0,57; циклогексан — 0,61; изоалканы с одной метильной группой в боковой цепи — 0,63; алканы с двумя метильными группами — 0,67; алканы с одной этильной группой — 0,72.

Цеолиты являются полярными адсорбентами, имеющими в структуре области с резко неоднородными электростатическими по­лями. Поэтому особенно энергично они адсорбируют полярные мо­лекулы и молекулы углеводородов с двойными и тройными связя­ми. Критический диаметр таких адсорбируемых молекул может даже несколько превышать диаметр окон.

В соответствии с критическими размерами молекул и диамет­ром окон цеолит КА адсорбирует практически только воду, NaA — воду, СО2, H2S, NH3, CH3OH, этилен, пропилен, низшие диены и нормальные алкины, этан; цеолит СаА — нормальные углеводороды и спирты с числом углеродных атомов до 20, метил- и этилмеркаптаны, окись этилена, а также все соединения, поглощаемые цеоли­том NaA. Цеолит СаХ адсорбирует разветвленные алканы и спир­ты, бензол, циклогексан и их низшие гомологи с критическим диаметром ≈0,8 им. На СаХ пс сорбируются соединения аромати­ческого характера с разветвленными радикалами или большой мо­лекулярной массой, например 1,3,5-триэтилбензол, 1,3-дихлорбензол. Последние адсорбируются цеолитом NaX.

Процессы разделения углеводородов на цеолитах широко при­меняются в промышленности. Так, адсорбцией на цеолите СаА из керосино-газойлевых фракций выделяют нормальные алкены С10— C18, которые далее используют для микробиологического получе­ния белков, а также для производства биологически разлагаемых моющих веществ. Адсорбция проводится, как правило, в паровой фазе, так как в случае жидкофазного процесса трудно с достаточ­ной полнотой отделить несорбируемые компоненты от слоя сорбен­та. При десорбции алканов в качестве вытеснителей используют пентан, гексан, аммиак.

В последние годы в СНГ и за рубежом предложены и успеш­но применяются комбинированные методы облагораживания бензи­нов — повышения их октанового числа. В этих процессах адсорб­ционная депарафинизация бензиновых фракций на цеолитах соче­тается с изомеризацией, риформингом и алкилированием.

Адсорбция на цеолитах применяется и для выделения неразветвленных алкенов С10—С18 из смесей с алканами. Процесс на калий-бариевой форме цеолитов X и Y в промышленности исполь­зуется для извлечения n-ксилола из смеси аренов С8, и степень извлечения n-ксилола значительно выше, чем при кристаллизации. Цеолиты являются прекрасными осушителями газов и жид­костей, а также хорошими поглотителями сернистых соеди­нений.

Цеолиты используют и при анализе углеводородных смесей в качестве неподвижной фазы в газо-адсорбционной хроматографии. В частности, использование цеолитов типа NaX и СаХ позволяет решить сложную задачу анализа алкано-циклоалкановой части бензиновых фракций.








Дата добавления: 2015-06-12; просмотров: 1155;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.