Загальні відомості плоского електромагнітного поля
Нехай , , , залежать від і . Розкладемо вектори і на три перпендикулярних вектора, колінеарних осям координат. Для і маємо:
(9.5)
, (9.6)
де кожна складова і дорівнює відповідно складової і , помноженої на скаляр або .
Обмежимося випадком ідеального діелектрика і притому незарядженого ( ).Рівняння (9.1) - (9.4) легко спрощуються.
У якості «допоміжної поверхні» візьмемо поверхню паралелепіпеда висоти з квадратною основою, сторони якого паралельні осям і і мають однакову довжину, рівну одиниці.
Застосування до нашої допоміжної поверхні рівнянь (9.1) - (9.4) приводить до наступної системи рівнянь:
, (9.7)
, (9.8)
, (9.9)
, (9.10)
, (9.11)
, (9.12)
, (9.13)
, (9.14)
Рівняння (9.11), (9.14) і (9.12), (9.13) показують, що величини і залишаються постійними. Крім того рівняння (9.7), (9.14) не встановлюють ніякого зв'язку між собою, а також з усіма іншими компонентами полів і .
Це фізично означає наступне: плоске електромагнітне поле, яке залежить від , є суперпозицією однорідного електростатичного поля, паралельного осі і незалежного від нього однорідного статичного магнітного поля, також паралельного осі і незалежного від цих двох полів електромагнітного поля, вектори , , , якого мають тільки і компоненти (тобто перпендикулярні осі ).
Нас будуть цікавити тільки електромагнітні поля, що поширюються. Враховуючи вищесказане, приходимо до важливого результату: розповсюджуване плоске поле є поперечним полем, в ньому вектори , , , лежать у площинах, перпендикулярних до напрямку поширення.
Дата добавления: 2015-06-12; просмотров: 561;